Abstract
Indefinite nested sums are important building blocks to assemble closed forms for combinatorial counting problems or for problems that arise, e.g., in particle physics. Concerning the simplicity of such formulas an important subtask is to decide if the arising sums satisfy algebraic relations among each other. Interesting enough, algebraic relations of such formal sums can be derived from combinatorial quasi-shuffle algebras. We will focus on the following question: can one find more relations if one evaluates these sums to sequences and looks for relations within the ring of sequences. In this article we consider the sequences of the rather general class of (cyclotomic) harmonic sums and show that their relations coincide with the relations found by their underlying quasi-shuffle algebra. In order to derive this result, we utilize the quasi-shuffle algebra and construct a difference ring with the following property: (1) the generators of the difference ring represent (cyclotomic) harmonic sums, (2) they generate within the ring all (cyclotomic) harmonic sums, and (3) the sequences produced by the generators are algebraically independent among each other. This means that their sequences do not satisfy any polynomial relations. The proof of this latter property is obtained by difference ring theory and new symbolic summation results. As a consequence, any sequence produced by (cyclotomic) harmonic sums can be formulated within our difference ring in an optimal way: there does not exist a subset of the arising sums in which the sequence can be formulated as polynomial expression.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ablinger, J.: A computer algebra toolbox for harmonic sums related to particle physics. Master’s thesis, Johannes Kepler University, Linz (2009)
Ablinger, J.: Computer algebra algorithms for special functions in particle physics. PhD thesis, J. Kepler University Linz, Linz (2012)
Ablinger, J.: The package HarmonicSums: Computer algebra and analytic aspects of nested sums. In: Blümlein, J., Marquard, P., Riemann, T. (eds.) Loops and Legs in Quantum Field Theory—LL 2014, pp. 1–10. Elsevier, Zeuthen (2014)
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Haßelhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.: The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function \(f_2(x, q^2)\) and transversity. Nucl. Phys. B 886, 733–823 (2014)
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: The 3-loop pure singlet heavy flavor contributions to the structure function \(f_2(x, q^2)\) and the anomalous dimension. Nucl. Phys. B 890, 48–151 (2015)
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: Calculating three loop ladder and V-topologies for maßive operator matrix elements by computer algebra. Comput. Phys. Comm. 202, 33–112 (2016)
Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums and their associated iterated integrals. J. Math. Phys. 55(11), 112301, (2014)
Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52(10), 102301 (2011)
Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54(8), 082301 (2013)
Abramov, S.A.: On the summation of rational functions. Zh. vychisl. mat. Fiz. 11, 1071–1074 (1971)
Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R. Comput. Math. Math. Phys. 29(6), 7–12 (1989)
Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: von zur Gathen, J. (ed.) Proc. ISSAC’94, pp. 169–174. ACM Press, New York, NY (1994)
Blümlein, J.: Analytic continuation of mellin transforms up to two-loop order. Comput. Phys. Commun. 133(1), 76–104 (2000)
Blümlein, J.: Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159(1), 19–54 (2004)
Blümlein, J.: Structural relations of harmonic sums and mellin transforms up to weight \(w = 5\). Comput. Phys. Commun 180(11), 2218–2249 (2009)
Blümlein, J.: Structural relations of harmonic sums and mellin transforms at weight \(w=6\). In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Proceedings, Vol. 12, pp. 167–187. Amer. Math. Soc., Providence, RI (2010)
Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to twoloop order. Phys. Rev. D 60, 014018 (1999)
Blümlein, J., Moch, S.: Analytic continuation of the harmonic sums for the 3loop anomalous dimensions. Phys. Lett. B 614(12), 53–61 (2005)
Bronstein, M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput. 29(6), 841–877 (2000)
Cohn, R.M.: Difference Algebra. Interscience Publishers, John Wiley & Sons, New YorkLondonSydeny (1965)
Costermans, C., Enjalbert, J.Y., Minh, H.N., Petitot, M.: Structure and asymptotic expansion of multiple harmonic sums. In: Kauers, M. (ed.) Proc. of IßAC 2005, pp. 100–107. ACM, New York (2005)
Davydychev, A.I., Kalmykov, M.Y.: Maßive Feynman diagrams and inverse binomial sums. Nucl. Phys. B 699(12), 3–64 (2004)
Fleischer, J., Kotikov, A.V., Veretin, O.L.: Analytic twoloop results for selfenergytype and vertextype diagrams with one nonzero maß. Nuclear Phys. B 547(12), 343–374 (1999)
Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symbolic Comput. 27(3), 239–259 (1999)
Hoffman, M.: Multiple harmonic series. Pacific J. Math. 152(2), 275–290 (1992)
Hoffman, M.: The algebra of multiple harmonic series. J. Algebra 194(2), 477–495 (1997)
Hoffman, M.: Quasishuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)
Karr, M.: Summation in finite terms. J. ACM 28(2), 305–350 (1981)
Karr, M.: Theory of summation in finite terms. J. Symbolic Comput. 1(3), 303–315 (1985)
Moch, S., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions, and multiscale multiloop integrals. J. Math. Phys. 43(6), 3363–3386 (2002)
Nemes, I., Paule, P.: A canonical form guide to symbolic summation. In: Miola, A., Temperini, M. (eds.) Advances in the Design of Symbolic Computation Systems, Texts Monogr. Symbol. Comput., pp. 84–110. Springer, WienNew York (1997)
Paule, P., Schneider, C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2), 359–378 (2003)
Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A = B\). A K Peters Ltd, Wellesley, MA (1996)
Petkovšek, M., Zakrajšek, H.: Solving linear recurrence equations with polynomial coefficients. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, TextsMonogr. Symbol. Comput., pp. 259–284. Springer, Vienna (2013)
Prodinger, H., Schneider, C., Wagner, S.: Unfair permutations. European J. Combin. 32(8), 1282–1298 (2011)
Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Internat. J. Modern Phys. A 15(5), 725–754 (2000)
Schneider, C.: A collection of denominator bounds to solve parameterized linear difference equations in \({\prod \sum}\)-extensions. An. Univ. Timis, oara Ser. Mat. Inform. 42(2), 163–179 (2004)
Schneider, C.: Symbolic summation aßists combinatorics. Sem. Lothar. Combin. 56, Art. B56b (2006/07)
Schneider, C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43(9), 611–644 (2008)
Schneider, C.: Parameterized telescoping proves algebraic independence of sums. Ann. Combin. 14(4), 533–552 (2010)
Schneider, C.: Structural theorems for symbolic summation. Appl. Algebra Engrg. Comm. Comput. 21(1), 1–32 (2010)
Schneider, C.: A symbolic summation approach to find optimal nested sum representations. In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Proceedings, Vol. 12, pp. 285–308. Amer. Math. Soc., Providence, RI (2010)
Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts Monogr. Symbol. Comput., pp. 325–360. Springer-Verlag Wien, Vienna (2013)
Schneider, C.: A streamlined difference ring theory: Indefinite nested sums, the alternating sign and the parameterized telescoping problem. In: Winkler, F. et al. (eds.) Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 15th International Symposium, pp. 26–33. IEEE Computer Society, Washington, DC (2014)
Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials, Applications of Algebra and Number Theory. Lecture Notes in Computer Science (LNCS), Vol. 8942, pp. 157–191. Springer, New York (2015)
Schneider, C.: A difference ring theory for symbolic summation. J. Symbolic. Comput. 72, 82–127 (2016)
Schneider, C.: Summation theory II: characterizations of \({R\prod\sum}\)-extensions and algorithmic aspects. J. Symbolic. Comput. 80, 616–664 (2017)
Schneider, C., Osburn, R.: Gaußian hypergeometric series and supercongruences. Math. Comp. 78(267), 275–292 (2009)
Schneider, C., Pemantle, R.: When is 0.999... equal to 1? Amer. Math. Monthly 114(4), 344–350 (2007)
van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. Lecture Notes in Math., Vol. 1666. Springer-Verlag, Berlin (1997)
Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Internat. J. Modern Phys. A 14(13), 2037–2076 (1999)
Weinzierl, S.: Expansion around half-integer values, binomial sums and inverse binomial sums. J. Math. Phys. 45(7), 2656–2673 (2004)
Acknowledgments
Open access funding provided by [Johannes Kepler University Linz].
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the Austrian Science Fund (FWF) grant SFB F50 (F5009-N15).
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ablinger, J., Schneider, C. Algebraic Independence of Sequences Generated by (Cyclotomic) Harmonic Sums. Ann. Comb. 22, 213–244 (2018). https://doi.org/10.1007/s00026-018-0381-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00026-018-0381-5