[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Curcumin, a natural polyphenol, has been described to exhibit effects on signaling pathways, leading to induction of apoptosis. In this study, we observed that curcumin inhibited Hsp90 activity causing depletion of client proteins implicated in survival pathways. Based on this observation, this study was designed to investigate the cellular effects of curcumin combination with the pan-HDAC inhibitors, vorinostat and panobinostat, which induce hyperacetylation of Hsp90, resulting in inhibition of its chaperone function. The results showed that, at subtoxic concentrations, curcumin markedly sensitized tumor cells to vorinostat- and panobinostat-induced growth inhibition and apoptosis. The sensitization was associated with persistent depletion of Hsp90 client proteins (EGFR, Raf-1, Akt, and survivin). In conclusion, our findings document a novel mechanism of action of curcumin and support the therapeutic potential of curcumin/HDAC inhibitors combination, because the synergistic interaction was observed at pharmacologically achievable concentrations, which were ineffective when each drug was used alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59

    Article  CAS  PubMed  Google Scholar 

  2. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin—cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111

    Article  CAS  PubMed  Google Scholar 

  3. Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS (1999) Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59:597–601

    CAS  PubMed  Google Scholar 

  4. Chauhan DP (2002) Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des 8:1695–1706

    Article  CAS  PubMed  Google Scholar 

  5. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signalling proteins. Cancer Lett 269:199–225

    Article  CAS  PubMed  Google Scholar 

  6. Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351

    Article  CAS  PubMed  Google Scholar 

  7. Wu LX, Xu JH, Huang XW, Zhang KZ, Wen CX, Chen YZ (2006) Down-regulation of p210(bcr/abl) by curcumin involves disrupting molecular chaperone functions of Hsp90. Acta Pharmacol Sin 27:694–699

    Article  CAS  PubMed  Google Scholar 

  8. Jung Y, Xu W, Kim H, Ha N, Neckers L (2007) Curcumin-induced degradation of ErbB2: a role for the E3 ubiquitin legase CHIP and the Michael reaction acceptor activity of curcumin. Biochim Biophys Acta 1773:383–390

    Article  CAS  PubMed  Google Scholar 

  9. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918

    Article  CAS  PubMed  Google Scholar 

  10. Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581:3758–3769

    Article  CAS  PubMed  Google Scholar 

  11. Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021–1030

    Article  CAS  PubMed  Google Scholar 

  12. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ (2009) Targeting Hsp90 for cancer therapy. Br J Cancer 100:1523–1529

    Article  CAS  PubMed  Google Scholar 

  13. Whitesell L, Lindquist SL (2005) Hsp90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  14. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    Article  CAS  PubMed  Google Scholar 

  15. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus E, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylase and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  CAS  PubMed  Google Scholar 

  16. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    Article  CAS  PubMed  Google Scholar 

  17. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159

    Article  CAS  PubMed  Google Scholar 

  18. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  CAS  PubMed  Google Scholar 

  19. Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, Moscinski L, Smith C, Wu J, Jove R, Atadja P, Bhalla K (2003) Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 63:5126–5135

    CAS  PubMed  Google Scholar 

  20. Yang Y, Rao R, Shen J, Tang Y, Fiskus W, Nechtman J, Atadja P, Bhalla K (2008) Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res 68:4833–4842

    Article  CAS  PubMed  Google Scholar 

  21. Fiskus W, Ren Y, Mohapatra A, Bali P, Mandawat A, Rao R, Herger B, Yang Y, Atadja P, Wu J, Bhalla K (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-alpha levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13:4882–4890

    Article  CAS  PubMed  Google Scholar 

  22. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  PubMed  Google Scholar 

  23. Zuco V, Zanchi C, Cassinelli G, Lanzi C, Supino R, Pisano C, Zanier R, Giordano V, Garattini E, Zunino F (2004) Induction of apoptosis and stress response in ovarian carcinoma cell lines treated with ST1926, an atipica retinoid. Cell Death Differ 11:280–289

    Article  CAS  PubMed  Google Scholar 

  24. Howes R, Barril X, Dymock BW, Grant K, Northfield CJ, Robertson AG, Surgenor A, Wayne J, Wright L, James K, Matthews T, Cheung KM, McDonald E, Workman P, Drysdale MJ (2006) A fluorescence polarization assay for inhibitors of Hsp90. Anal Biochem 350:202–213

    Article  CAS  PubMed  Google Scholar 

  25. Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277

    Article  CAS  PubMed  Google Scholar 

  26. Myszka DG (1999) Improving biosensor analysis. J Mol Recognit 12:279–284

    Article  CAS  PubMed  Google Scholar 

  27. Papalia GA, Leavitt S, Bynum MA, Katsamba PS, Wilton R, Qiu H, Steukers M, Wang S, Bindu L, Phogat S, Giannetti AM, Ryan TE, Pudlak VA, Matusiewicz K, Michelson KM, Nowakowski A, Pham-Baginski A, Brooks J, Tieman BC, Bruce BD, Vaughn M, Baksh M, Cho YH, Wit MD, Smets A, Vandersmissen J, Michiels L, Myszka DG (2006) Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology. Anal Biochem 359:94–105

    Article  CAS  PubMed  Google Scholar 

  28. Birolo L, Dal Piaz F, Pucci P, Marino G (2002) Structural characterization of the M* partly folded intermediate of wild type and P138A aspartate aminotransferase fron Escherichia coli. J Biol Chem 277:17428–17437

    Article  CAS  PubMed  Google Scholar 

  29. Sharp SY, Prodromou C, Boxall K, Powers MV, Holmes JL, Box G, Matthews TP, Cheung KM, Kalusa A, James K, Hayes A, Hardcastle A, Dymock B, Brough PA, Barril X, Cansfield JE, Wright L, Surgenor A, Foloppe N, Hubbard RE, Aherne W, Pearl L, Jones K, McDonald E, Raynaud F, Eccles S, Drysdale M, Workman P (2007) Inhibition of the heat showck protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol Cancer Ther 6:1198–1211

    Article  CAS  PubMed  Google Scholar 

  30. An WG, Schulte TW, Neckers LM (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr–abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11:355–360

    CAS  PubMed  Google Scholar 

  31. Atkinson RA, Joseph C, Dal Piaz F, Birolo L, Stier G, Pucci P, Pastore A (2000) Binding of alpha-actinin to titin: implications for Z-disk assembly. Biochemistry 39:5255–5264

    Article  CAS  PubMed  Google Scholar 

  32. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumour antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  33. Cooper MA (2003) Biosensor profiling of molecular interactions in pharmacology. Curr Opin Pharmacol 3:557–562

    Article  CAS  PubMed  Google Scholar 

  34. Nimmanapalli R, O’Bryan E, Bhalla K (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61:1799–1804

    CAS  PubMed  Google Scholar 

  35. Stancato LF, Silverstein AM, Owens-Grillo JK, Chow YH, Jove R, Pratt WB (1997) The Hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signalling without disrupting formation of signalling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem 272:4013–4020

    Article  CAS  PubMed  Google Scholar 

  36. Pratt WB, Toft DO (2003) Regulation of signalling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  37. Rahmani M, Reese E, Dai Y, Bauer C, Kramer LB, Huang M, Jove R, Dent P, Grant S (2005) Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ cells sensitive and resistant to STI571 (Imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol Pharmacol 67:1166–1176

    Article  CAS  PubMed  Google Scholar 

  38. George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F, Sigua C, Sondarva G, Moscinski L, Atadja P, Bhalla K (2005) Combination of the histone deacetylase inhibitor LBH589 and the Hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 105:1768–1776

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen A, Su L, Campbell B, Poulin NM Nielsen TO (2009) Synergism of heat shock protein 90 and histone deacetylase inhibitors in synovial sarcoma. Sarcoma 794901

  40. Rao R, Fiskus W, Yang Y, Lee P, Joshi R (2008) HDAC6 inhibition enhances 17-AAG-mediated abrogation of Hsp90 chaperone function in human leukemia cells. Blood 112:1886–1893

    Article  CAS  PubMed  Google Scholar 

  41. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  42. Fulda S (2008) Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr Cancer Drug Targets 8:132–140

    Article  CAS  PubMed  Google Scholar 

  43. Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, antiangiogenesis and inhibition of nuclear factor-kB-regulated gene products. Cancer Res 67:3853–3861

    Article  CAS  PubMed  Google Scholar 

  44. Somers-Edgar TJ, Scandlyn MJ, Sturart EC, Le Nedelec MJ, Valentine SP (2008) The combination of epigallocatechin gallate and curcumin suppresses ERα-breast cancer cell growth in vitro and in vivo. Int J Cancer 122:1966–1971

    Article  CAS  PubMed  Google Scholar 

  45. Mai A, Altucci L (2009) Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 41:199–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Associazione Italiana per la Ricerca sul Cancro, Milan, by the Fondazione CARIPLO, Milan, and by the Ministero della Salute (Project Alleanza Contro il Cancro), Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Zunino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giommarelli, C., Zuco, V., Favini, E. et al. The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell. Mol. Life Sci. 67, 995–1004 (2010). https://doi.org/10.1007/s00018-009-0233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0233-x

Keywords

Navigation