[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A hybrid sequential approximate programming method for second-order reliability-based design optimization approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The second-order reliability method (SORM) is an effective tool to evaluate the reliability, but its application for reliability-based design optimization faces unbearable computational cost. In this study, a new hybrid sequential approximate programming (HSAP) method is developed to calculate the optimum efficiently by developing a distance-checking criterion and a convex approximate method. Since the distance-checking criterion identifies the feasibility of the probabilistic constraint effectively, the proposed method combines the efficiency of the sequential approximate programming method and the accuracy of SORM. The convex approximate method is also constructed using the sensitivity and function value of the probabilistic constraint. So no additional computational cost is required in the optimization process. Five illustrative examples, including two mathematical examples and thee practical engineering examples, demonstrate the efficiency and accuracy of the proposed HSAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, X., Liu, Y., Zhang, Y., Yue, Z.: Hybrid reliability analysis with both random and probability-box variables. Acta Mech. 226(5), 1341–1357 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jiang, C., Bi, R.G., Lu, G.Y., Han, X.: Structural reliability analysis using non-probabilistic convex model. Comput. Methods Appl. Mech. Eng. 254, 83–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, C., Qiu, Z.P., Chen, X.: Uncertainty analysis for heat convection–diffusion problem with large uncertain-but-bounded parameters. Acta Mech. 226(11), 3831–3844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Keshtegar, B.: Stability iterative method for structural reliability analysis using a chaotic conjugate map. Nonlinear Dyn. 84(4), 2161–2174 (2016)

    Article  MathSciNet  Google Scholar 

  5. Meng, Z., Li, G., Yang, D.X., Zhan, L.: A new directional stability transformation method of chaos control for first order reliability analysis. Struct. Multidiscip. Optim. (2016). doi:10.1007/s00158-016-1525-z

    Google Scholar 

  6. Der Kiureghian, A., Dakessian, T.: Multiple design points in first and second-order reliability. Struct. Saf. 20(1), 37–49 (1998)

    Article  Google Scholar 

  7. Lee, I., Noh, Y., Yoo, D.: A novel second-order reliability method (SORM) using noncentral or generalized chi-squared distributions. J. Mech. Des. 134(10), 1113–1124 (2012)

    Article  Google Scholar 

  8. Hasofer, A.M., Lind, N.C.: Exact and invariant second moment code format. J. Eng. Mech. Div. Asce 100(1), 111–121 (1974)

    Google Scholar 

  9. Tu, J., Choi, K.K., Park, Y.H.: A new study on reliability-based design optimization. J. Mech. Des. 121(4), 557–564 (1999)

    Article  Google Scholar 

  10. Jiang, C., Han, S., Ji, M., Han, X.: A new method to solve the structural reliability index based on homotopy analysis. Acta Mech. 226(4), 1067–1083 (2015)

    Article  MathSciNet  Google Scholar 

  11. Reddy, M.V., Grandhi, R.V.: Reliability based structural optimization: a simplified safety index approach. Comput. Struct. 53(6), 1407–1418 (1994)

    Article  MATH  Google Scholar 

  12. Meng, Z., Li, G., Wang, B.P., Hao, P.: A hybrid chaos control approach of the performance measure functions for reliability-based design optimization. Comput. Struct. 146(1), 32–43 (2015)

    Article  Google Scholar 

  13. Huang, Z.L., Jiang, C., Zhou, Y.S., Luo, Z., Zhang, Z.: An incremental shifting vector approach for reliability-based design optimization. Struct. Multidiscip. Optim. 53(3), 523–543 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kaymaz, I., Marti, K.: Reliability-based design optimization for elastoplastic mechanical structures. Comput. Struct. 85(10), 615–625 (2007)

    Article  MathSciNet  Google Scholar 

  15. Du, X.P., Chen, W.: Sequential optimization and reliability assessment method for efficient probabilistic design. J. Mech. Des. 126(2), 225–233 (2004)

    Article  Google Scholar 

  16. Shan, S., Wang, G.G.: Reliable design space and complete single-loop reliability-based design optimization. Reliab. Eng. Syst. Saf. 93(8), 1218–1230 (2008)

    Article  Google Scholar 

  17. Du, X.P., Guo, J., Beeram, H.: Sequential optimization and reliability assessment for multidisciplinary systems design. Struct. Multidiscip. Optim. 35(2), 117–130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cho, T.M., Lee, B.C.: Reliability-based design optimization using convex linearization and sequential optimization and reliability assessment method. Struct. Saf. 33(1), 42–50 (2011)

    Article  MathSciNet  Google Scholar 

  19. Yi, P., Cheng, G.D., Jiang, L.: A sequential approximate programming strategy for performance-measure-based probabilistic structural design optimization. Struct. Saf. 30(2), 91–109 (2008)

    Article  Google Scholar 

  20. Aoues, Y., Chateauneuf, A.: Benchmark study of numerical methods for reliability-based design optimization. Struct. Multidiscip. Optim. 41(2), 277–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rahman, S., Wei, D.: A univariate approximation at most probable point for higher-order reliability analysis. Int. J. Solids Struct. 43(9), 2820–2839 (2006)

    Article  MATH  Google Scholar 

  22. Rahman, S., Xu, H.: A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab. Eng. Mech. 19(4), 393–408 (2004)

    Article  Google Scholar 

  23. Zhang, J., Du, X.: A second-order reliability method with first-order efficiency. J. Mech. Des. 132(10), 101006 (2010)

    Article  Google Scholar 

  24. Ren, X., Rahman, S.: Robust design optimization by polynomial dimensional decomposition. Struct. Multidiscip. Optim. 48(1), 127–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rashki, M., Miri, M., Moghaddam, M.A.: A new efficient simulation method to approximate the probability of failure and most probable point. Struct. Saf. 39(11), 22–29 (2012)

    Article  Google Scholar 

  26. Breitung, K.: Asymptotic approximations for multinormal integrals. J. Eng. Mech. 110(3), 357–366 (1984)

    Article  MATH  Google Scholar 

  27. Kiureghian, A.D., Stefano, M.D.: Efficient algorithm for second-order reliability analysis. J. Eng. Mech. 117(12), 2904–2923 (1991)

    Article  Google Scholar 

  28. Lim, J., Lee, B., Lee, I.: Second-order reliability method-based inverse reliability analysis using Hessian update for accurate and efficient reliability-based design optimization. Int. J. Numer. Methods Eng. 100(10), 773–792 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lim, J., Lee, B., Lee, I.: Post optimization for accurate and efficient reliability-based design optimization using second-order reliability method based on importance sampling and its stochastic sensitivity analysis. Int. J. Numer. Methods Eng. (2015). doi:10.1002/nme.5150

    MATH  Google Scholar 

  30. Lee, I., Choi, K.K., Du, L., Gorsich, D.: Inverse analysis method using MPP-based dimension reduction for reliability-based design optimization of nonlinear and multi-dimensional systems. Comput. Methods Appl. Mech. Eng. 198(1), 14–27 (2008)

    Article  MATH  Google Scholar 

  31. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science & Business Media, New York (2006)

    MATH  Google Scholar 

  32. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cheng, G.D., Xu, L., Jiang, L.: A sequential approximate programming strategy for reliability-based structural optimization. Comput. Struct. 84(21), 1353–1367 (2006)

    Article  Google Scholar 

  34. Chen, Z., Qiu, H., Gao, L., Su, L., Li, P.: An adaptive decoupling approach for reliability-based design optimization. Comput. Struct. 117(2), 58–66 (2013)

    Article  Google Scholar 

  35. Meng, Z., Hao, P., Li, G., Wang, B., Zhang, K.: Non-probabilistic reliability-based design optimization of stiffened shells under buckling constraint. Thin Walled Struct. 94(9), 325–333 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Zhou, H., Li, G. et al. A hybrid sequential approximate programming method for second-order reliability-based design optimization approach. Acta Mech 228, 1965–1978 (2017). https://doi.org/10.1007/s00707-017-1808-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1808-5

Navigation