[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The mechanical characteristics of various sedimentary stones significantly depend on the water content, where 70 % loss of their mechanical strengths can be observed when saturated by water. Furthermore, the clay fraction has been shown to be a key factor of their hydro-mechanical behaviour since it governs for instance the hydric dilation. This work aims at investigating the correlations between the clay mineral content and the mechanical weakening experienced by limestones when interacting with water. The experimental characterization focuses on five different limestones that exhibit very different micro-structures. For each of them, we present the determination of clay mineral composition, the sorption isotherm curve and the dependences of tensile and compressive strengths on the water content. It emerges from these results that, first, the sorption behaviour is mainly governed by the amount of smectite layers which exhibit the larger specific area and, second, the rate of mechanical strength loss depends linearly on the sorption capacity. Indeed, the clay fraction plays the role of a retardation factor that delays the appearance of capillary bridges as well as the mechanical weakening of stones. However, no correlation was evidenced between the clay content and the amplitude of weakening. Since the mechanisms whereby the strength decreases with water content are not clearly established, these results would help to discriminate between various hypothesis proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Benavente D, Cultrone G, Gómez-Hera M (2008) The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones. Eur J Miner 20:673–685. doi:10.1127/0935-1221/2008/0020-1850

    Article  Google Scholar 

  • Berthonneau J, Grauby O, Ferrage E, Vallet JM, Bromblet P, Dessandier D, Chaudanson D, Baronnet A (2014) Impact of swelling clays on the spalling decay of building limestones: insights from X-ray diffraction profile modeling. Eur J Miner 26:643–656

    Article  Google Scholar 

  • Berthonneau J, Bromblet P, Cherblanc F, Ferrage E, Vallet JM, Grauby O (2015) The spalling decay of building bioclastic limestones of provence (south east of france): from clay minerals swelling to hydric dilation. J Cult Herit

  • Ciantia MO, Hueckel T (2013) Weathering of submerged stressed calcarenites: chemo-mechanical coupling mechanisms. Géotechnique 63:768–785. doi:10.1680/geot.SIP13.P.024

    Article  Google Scholar 

  • Ciantia MO, Castellanza R, Crosta G, Hueckel T (2015a) Effects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks. Eng Geol 184:1–18. doi:10.1016/j.enggeo.2014.10.024

    Article  Google Scholar 

  • Ciantia MO, Castellanza R, di Prisco C (2015b) Experimental study on the water-induced weakening of calcarenites. Rock Mech Rock Eng 48:441–461. doi:10.1007/s00603-014-0603-z

    Article  Google Scholar 

  • Colas E, Mertz JD, Thomachot-Schneider C, Barbin V, Rassineux F (2011) Influence of the clay coating properties on the dilation behavior of sandstones. Appl Clay Sci 52:245–252

    Article  Google Scholar 

  • Drits VA, Tchoubar C (1990) X-ray diffraction by disordered lamellar structures: theory and applications to microdivised silicates and carbons. Springer, Berlin

    Book  Google Scholar 

  • Erguler ZA, Ulusay R (2009) Water-induced variations in mechanical properties of clay-bearing rocks. Int J Rock Mech Min Sci 46:355–370. doi:10.1016/j.ijrmms.2008.07.002

    Article  Google Scholar 

  • Ferrage E, Vidal O, Mosser-Ruck R, Cathelineau M, Cuadros J (2011) A reinvestigation of smectite illitization in experimental hydrothermal conditions: results from x-ray diffraction and transmission electron microscopy. Am Miner 96:207–223

    Article  Google Scholar 

  • Franzini M, Leoni L, Lezzerini M, Cardelli R (2007) Relationships between mineralogical composition, water absorption and hydric dilatation in the macigno sandstones from lunigiana (massa, tuscany). Eur J Miner 19:113–123

    Article  Google Scholar 

  • Grgic D, Giot R, Homand F, Giraud A (2005) Effect of suction on the mechanical behaviour of iron ore rock. Int J Numer Anal Methods Geomech 29:789–827. doi:10.1002/nag.438

    Article  Google Scholar 

  • Hawkins AB, McConnell BJ (1992) Sensitivity of sandstone strength and deformability to changes in moisture content. Q J Eng Geol 25:115–130

    Article  Google Scholar 

  • Howard S, Preston K (1989) Profile fitting of powder diffraction patterns. Rev Miner Geochem 20:217–275

    Google Scholar 

  • Jiménez-González I, Rodríguez-Navarro C, Scherer G (2008) Role of clay minerals in the physicomechanical deterioration of sandstone. J Geophys Res 113(F02):021. doi:10.1029/2007JF000845

    Google Scholar 

  • Lanson B, Sakharov BA, Claret F, Drits VA (2009) Diagenetic smectite-to-illite transition in clay-rich sediments: a reappraisal of X-ray diffraction results using the multi-specimen method. Am J Sci 309:476–516

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Mielniczuk B, Hueckel T, Youssoufi MSE (2014a) Evaporation-induced evolution of the capillary force between two grains. Granular Matter 16(5):815–828. doi:10.1007/s10035-014-0512-6

    Article  Google Scholar 

  • Mielniczuk B, Hueckel T, Youssoufi MSE (2014b) Rupture of a liquid bridge between two grains due to its evaporation. Acta Geophys 62(5):1087–1108. doi:10.2478/s11600-014-0225-6

    Article  Google Scholar 

  • Morales-Demarco M, Jahns E, Ruedrich J, Oyhantcabal P, Siegesmund S (2007) The impact of partial water saturation on rock strength: an experimental study on sandstone. Z dt Ges Geowiss 158:869–882. doi:10.1127/1860-1804/2007/0158-0869

    Google Scholar 

  • Ojo O, Brook N (1990) The effect of moisture on some mechanical properties of rock. Min Sci Technol 10:145–156

    Article  Google Scholar 

  • Papamichos E, Brignoli M, Santarelli F (1997) An experimental and theoretical study of a partially saturated collapsible rock. Mech Cohesive Frict Mater 2:251–278

    Article  Google Scholar 

  • Revil A, Lu N (2013) Unified water isotherms for clayey porous materials. Water Resour Res 49:56855699. doi:10.1002/wrcr.20426

    Google Scholar 

  • Ruedrich J, Bartelsen T, Dohrmann R, Siegesmund S (2011) Moisture expansion as a deterioration factor for sandstone used in buildings. Environ Earth Sci 63:1545–1564. doi:10.1007/s12665-010-0767-0

    Article  Google Scholar 

  • Sebastián E, Cultrone G, Benavente D, Fernandez LL, Elert K, Rodríguez-Navarro C (2008) Swelling damage in clay-rich sandstone used in the church of san mateo in tarifa (spain). J Cult Herit 9:66–76. doi:10.1016/j.culher.2007.09.002

    Article  Google Scholar 

  • Talesnick M, Shehadeh S (2007) The effect of water content on the mechanical response of a high-porosity chalk. Int J Rock Mech Min Sci 44:584–600. doi:10.1016/j.ijrmms.2006.07.016

    Article  Google Scholar 

  • Talesnick ML, Hatzor YH, Tsesarsky M (2001) The elastic deformability and strength of a high porosity, anisotropic chalk. Int J Rock Mech Min Sci 38:543–555

    Article  Google Scholar 

  • Török A, Vásárhelyi B (2010) The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from hungary. Eng Geol 115:237–245. doi:10.1016/j.enggeo.2010.01.005

    Article  Google Scholar 

  • Vásárhelyi B (2005) Statistical analysis of the influence of water content on the strength of the miocene limestone. Rock Mech Rock Eng 38:69–76. doi:10.1007/s00603-004-0034-3

    Article  Google Scholar 

  • Vásárhelyi B, Ván P (2006) Influence of water content on the strength of rock. Eng Geol 84:70–74. doi:10.1016/j.enggeo.2005.11.011

    Article  Google Scholar 

  • Vasconcelos G, Lourenço PB, Alves CAS, Pamplona J (2008) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48:453–466. doi:10.1016/j.ultras.2008.03.008

    Article  Google Scholar 

  • Vergès-Belmin V (ed) (2008) Illustrated glossary on stone deterioration patterns. ICOMOS, International Scientific Committee for Monuments and Sites. http://www.icomos.org

  • Weiss T, Siegesmund S, Kirchner D, Sippel J (2004) Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol 46:402–413. doi:10.1007/s00254-004-1041-0

    Article  Google Scholar 

  • West G (1994) Effect of suction on the strength of rock. Q J Eng Geol 27:51–56

    Article  Google Scholar 

  • Woodruff WF, Revil A (2011) Cec-normalized clay–water sorption isotherm. Water Resour Res 47(W11):502. doi:10.1029/2011WR010919

    Google Scholar 

  • Yilmaz I (2010) Influence of water content on the strength and deformability of gypsum. Int J Rock Mech Min Sci 47:342–347. doi:10.1016/j.ijrmms.2009.09.002

    Article  Google Scholar 

  • Yilmaz NG, Goktan RM, Kibici Y (2011) Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones. Int J Rock Mech Min Sci 48:506–513. doi:10.1016/j.ijrmms.2010.09.003

    Article  Google Scholar 

Download references

Acknowledgments

This work was done within the framework of a collaboration between the CICRP and the LMGC supported by the French Ministry of Culture and Communication through the PNRCC program (Programme National de Recherche sur la Connaissance et la Conservation du patrimoine culturel matériel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cherblanc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherblanc, F., Berthonneau, J., Bromblet, P. et al. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content. Rock Mech Rock Eng 49, 2033–2042 (2016). https://doi.org/10.1007/s00603-015-0911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0911-y

Keywords

Navigation