Abstract
In this work, an exponential effective function (EEF) is developed as fitness function applied in a hybrid-Genetic Algorithm (hybrid-GA) to propose a genetic-based effective approach to the glider path-planning of ocean-sampling mission in variable oceans. The proposed EEF is such an objective function that is able to be implemented in optimization algorithm such as Genetic Algorithm (GA) for evaluation of the fittest path. In consideration of the glider path-planning problem (GPP), two motivations are driven by the proposed approach to the glider path-planning in discovery of: (1) a reachable path with the upstream-current avoidance (UCA) in variable oceans; (2) an efficient path for the glider ocean-sampling mission. The exponential combination of the glider motion and current effects as well as the cruising distance benefits the path in terms of reachability and efficiency. The reachability is the first motivation to discover a reachable path implemented by the scheme of UCA, while the efficiency is the second motivation to shorten the cruising distance. Meanwhile, the stabilized path solution is accomplished by hybrid-GA. In variable oceans, currents severely impact the path solution and lead the global optimum to absence. Therefore, alternative is to discover an optimal path with the minimum upstream-current sub-paths to approximate the minimal cruising distance in the condition that the discovered cruising distance should be less than the glider cruising range. To deeply analyze the path reachability, two theorems are developed to verify the conditions of the downstream-current angle (DCA). To evaluate the path-planning performances, 6 state-of-the-art fitness functions are studied and used to make a fair comparison with the EEF in hybrid-GA. First of all, 112 scenarios are created in the restricted random current variations (RRCV). Secondly, 21 scenarios are created in the near-real Kuroshio Current of east Taiwan (KCET) introducing from an ocean prediction model. These scenarios are designed to evaluate fairly the EEF in hybrid-GA. Numeric results show that whether the RRCV or the KCET, the proposed EEF indeed is able to discover the optimal path with the benefits of reachability and efficiency. Therefore, the proposed genetic-based effective approach is well developed to solve the GPP in variable oceans.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Aghababa MP (2012) 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Appl Ocean Res. doi:10.1016/j.apor.2012.06.002
Ahmed ZH (2010) Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. Int J Biom Bioinform 3(6):96–105
Ahmed F, Deb K (2013) Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms. Soft Comput. doi:10.1007/s00500-012-0964-8
Albayrak M, Allahverdi N (2011) Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms. Expert Syst Appl. doi:10.1016/j.eswa.2010.07.006
Alcázar V, Veloso M, Borrajo D (2011) Adapting a rapidly-exploring random tree for automated planning. In: Proceedings of the fourth international symposium on combinatorial Ssearch (SoCS-2011), pp 1–9
Alvarez A, Caiti A, Onken R (2004) Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J Oceanic Eng. doi:10.1109/JOE.2004.827837
Barkley RA (1970) The Kuroshio current. Sci J 6:54–60
Bhadoria A, Singh RK (2014) Optimized angular a star algorithm for global path search based on neighbor node evaluation. Int J Intell Syst Appl (IJISA). doi:10.5815/ijisa
Castillo O, Trujillo L, Melin P (2007) Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Comput. doi:10.1007/s00500-006-0068-4
Clifton M, Paul G, Kwok N, Dikai L, Wang DL (2008) Evaluating performance of multiple RRTs. In: Mechtronic and embedded systems and spplication, pp 564–569. doi:10.1109/MESA.2008.4735749
Donald B, Xavier P, Canny J, Reif J (1993) Kinodynamic motion planning. J ACM. doi:10.1145/174147.174150
Fernandez-Perdomo E et al (2010) Path planning for gliders using regional ocean models: application of Pinzón path planner with the ESEOAT model and the RU27 trans-Atlantic flight data. In: Proceedings of IEEE OCEANS, pp 1–10. doi:10.1109/OCEANSSYD.2010.5603684
Fernandez-Perdomo E, Cabrera-Gamez J, Hernandez-Sosa D, Isern-Gonzalez J, Dominguez-Brito AC, Prieto-Maranon V, Ramos AG (2011) Adaptive bearing sampling for a constant-time surfacing A* path planning algorithm for gliders. In: Proceedings of IEEE international conference on robotics and automation (ICRA). doi:10.1109/ICRA.2011.5980137
Groba C, Sartal A, Vázquez XH (2015) Solving the dynamic traveling salesman problem using a genetic algorithm with trajectory prediction: An application to fish aggregating devices. Comput Oper. doi:10.1016/j.cor.2014.10.012
Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4:100–107. doi:10.1109/TSSC.1968.300136
Holland JH (1984) Genetic algorithms and adaptation. In: Adaptive control of Ill-defined systems. Springer US, Boston, pp 317–333. doi:10.1007/978-1-4684-8941-5_21
Hong TP, Huang KY, Lin WY (2002) Applying genetic algorithms to game search trees. Soft Comput. doi:10.1007/s005000100154
Larrañaga P, Kuijpers CMH, Murga RH, Inza I, Dizdarevic S (1999) Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif Intell. doi:10.1023/a:1006529012972
LaValle SM, Kuffner JJ Jr (2000) Rapidly-exploring random trees: progress and prospects. In: Algorithmic and computational robotics: new directions: the fourth workshop on the algorithmic foundations of robotics, pp 293–308
LaValle SM (2006) Motion planning. In: Planning algorithms, 1st edn. Cambridge University Press, Cambridge, pp 79–80
Leonard NE, Paley DA, Lekien F, Sepulchre R, Fratantoni DM, Davis RE (2007) Collective motion, sensor networks, and ocean sampling. Proc IEEE 95:48–74. doi:10.1109/JPROC.2006.887295
Lovie P (2005) Coefficient of variation. In: Encyclopedia of statistics in behavioral science. John Wiley & Sons, Ltd. doi:10.1002/0470013192.bsa107
Majumdar J, Bhunia AK (2011) Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. J Comput Appl Math. doi:10.1016/j.cam.2010.12.027
Mensah V, Jan S, Chiou M-D, Kuo TH, Lien R-C (2014) Evolution of the Kuroshio Tropical Water from the Luzon Strait to the east of Taiwan. Deep-Sea Res. doi:10.1016/j.dsr.2014.01.005
Moura A, Rijo R, Silva P, Crespo S (2010) A multi-objective genetic algorithm applied to autonomous underwater vehicles for sewage outfall plume dispersion observations. Appl Soft Comput. doi:10.1016/j.asoc.2010.05.009
Nagata Y, Soler D (2012) A new genetic algorithm for the asymmetric traveling salesman problem. Expert Syst Appl. doi:10.1016/j.eswa.2012.02.029
NIMA (2002) Calculations and conversions. In: The American practical navigator: bowditch, 2nd edn. Paradise Cay Publications, National Imagery and Mapping Agency, pp 331–332
Pêtrès C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE T Robot. doi:10.1109/tro.2007.895057
Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ (2004) Underwater gliders for ocean research. Mar Technol Soc J 38(2):73–84
Schrijver A (2005) On the history of combinatorial optimization. In: Handbooks in operations research and management science, vol 12. Elsevier, Amsterdam, pp 1–68. doi:10.1016/S0927-0507(05)12001-5
Sherman J, Davis R, Owens WB, Valdes J (2001) The autonomous underwater glider “Spray”. IEEE J Oceanic Eng 26(4):437–446. doi:10.1109/48.972076
Shih C-C, Horng M-F, Pan J-S (2012) 3-D adaptive bearing sampling for AUG route planning in extensible ocean model. In: Proceedings of 14th conference on undersea technology (CUST 2012), Kaohsiung, Taiwan (R.O.C), pp 71–84
Shih C-C, Yang Y, Horng M-F, Pan T-S, Pan J-S (2014) An effective approach to genetic path planning for autonomous underwater glider in a variable ocean. In: Proceedings of international forum on systems and mechatronics (IFSM2014), Tainan, Taiwan (R.O.C), pp 1–6
Skiena SS (2008) Graph problems: polynomial-time. In: The algorithm design manual, 2nd edn. Springer-Verlag, London, pp 495–496. doi:10.1007/978-1-84800-070-4
Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE T Robot. doi:10.1109/tro.2010.2085790
Spong MW, Vidyasagar M (2008) Velocity kinematics-the manipulator Jacoobian. In: Robot dynamics and control. Wiley India Pvt. Limited, pp 99–100
Wang Y (2014) The hybrid genetic algorithm with two local optimization strategies for traveling salesman problem. Comput Ind Eng. doi:10.1016/j.cie.2014.01.015
Webb DC, Simonetti PJ, Jones CP (2001) SLOCUM: an underwater glider propelled by environmental energy. IEEE J Oceanic Eng 26(4):447–452. doi:10.1109/48.972077
Weisstein EW (2002) CRC concise encyclopedia of mathematics, 2nd edn. Chapman and Hall/CRC, pp 1990–1991
Young JH, Wan KC (2013) RRT-based path planning with kinematic constraints of AUV in underwater structured environment. In: Proceedings of 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2013). doi:10.1109/urai.2013.6677328
Yu X, Gen M (2010) Simple evolutionary algorithms. In: Introduction to evolutionary algorithms, 1st edn. Springer-Verlag, London, pp 15–24. doi:10.1007/978-1-84996-129-5
Zhang Z, Zhao Z (2014) A multiple mobile robots path planning algorithm based on A-star and Dijkstra algorithm. Int J Smart Home 8(3):75–86
Acknowledgments
This research has been financially supported in part by the MOST ROC (Taiwan) under Grants “MOST104-2221-E-151-007”. The financial support is gratefully appreciated. The authors would also like to thank Dr. Yih Yang and Dr. Jian-Ming Liau at Taiwan Ocean Research Institute, National Applied Research Laboratories for providing the relative support of the Kuroshio Current simulation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Shih, CC., Horng, MF., Pan, TS. et al. A genetic-based effective approach to path-planning of autonomous underwater glider with upstream-current avoidance in variable oceans. Soft Comput 21, 5369–5386 (2017). https://doi.org/10.1007/s00500-016-2122-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-016-2122-1