[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new fuzzy clustering algorithm for the segmentation of brain tumor

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper introduces a new method of clustering algorithm based on interval-valued intuitionistic fuzzy sets (IVIFSs) generated from intuitionistic fuzzy sets to analyze tumor in magnetic resonance (MR) images by reducing time complexity and errors. Based on fuzzy clustering, during the segmentation process one can consider numerous cases of uncertainty involving in membership function, distance measure, fuzzifier, and so on. Due to poor illumination of medical images, uncertainty emerges in their gray levels. This paper concentrates on uncertainty in the allotment of values to the membership function of the uncertain pixels. Proposed method initially pre-processes the brain MR images to remove noise, standardize intensity, and extract brain region. Subsequently IVIFSs are constructed to utilize in the clustering algorithm. Results are compared with the segmented images obtained using histogram thresholding, k-means, fuzzy c-means, intuitionistic fuzzy c-means, and interval type-2 fuzzy c-means algorithms and it has been proven that the proposed method is more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agrawal S, Panda R, Dora L (2014) A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl Soft Comput 24:522–533

    Article  Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20:87–96

    Article  MATH  MathSciNet  Google Scholar 

  • Atanassov K, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Set Syst 31:343–349

    Article  MATH  MathSciNet  Google Scholar 

  • Balasubramaniam P, Ananthi VP (2014) Image fusion using intuitionistic fuzzy sets. Inf Fusion 20:2130

    Article  Google Scholar 

  • Bustince H, Kacpryzky J, Mohedano Z (2000) Intuitionistic fuzzy generators application to intuitionistic fuzzy complement. Fuzzy Set Syst 114:485–504

    Article  MATH  Google Scholar 

  • Bustince H, Barrenechae E, Pagola M, Fernandez J (2009) Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Set Syst 160:1819–1840

    Article  MATH  MathSciNet  Google Scholar 

  • Bustince H, Burillo P (1995) A theorem for constructing interval-valued intuitionistic fuzzy sets from intuitionistic fuzzy sets. Note Intuit Fuzzy Set 1:5–16

    MATH  MathSciNet  Google Scholar 

  • Chaira T (2011) A novel intuitionistic fuzzy C-means clustering algorithm and its application to medical images. Appl Soft Comput 11:1711–1717

    Article  Google Scholar 

  • Chaira T (2014) Accurate segmentation of leukocyte in blood cell images using Atanassovs intuitionistic fuzzy and interval Type II fuzzy set theory. Micron 61:1–8

    Article  Google Scholar 

  • Chuang KS, Tzeng AL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30:9–15

    Article  Google Scholar 

  • Farias G, Santos M, Lopez V (2010) Making decisions on brain tumor diagnosis by soft computing techniques. Soft Comput 14:1287–1296

    Article  Google Scholar 

  • Galdames FJ, Jaillet F, Perez CA (2012) An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images. J Neurosci Method 206:103–119

    Article  Google Scholar 

  • Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Pearson Education

    Google Scholar 

  • Hou Z (2006) A review on MR image intensity inhomogenity correction. Int J Boimed Imaging, pp 1–11. doi:10.1155/IJBI/2006/49515

  • Huang CW, Lin KP, Wu MC, Hung KC, Liu GS, Jen CH (2015) Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19:459– 470

    Article  Google Scholar 

  • Hwang C, Rhee FC (2007) Uncertainty fuzzy clustering: interval type-2 fuzzy approach to c-means. IEEE Trans Fuzzy Syst 15:107–120

    Article  Google Scholar 

  • Ji Z, Xia Y, Sun Q, Cao G (2014) Interval-valued possibilistic fuzzy C-means clustering algorithm. Fuzzy Set Syst 253:138–156

    Article  MathSciNet  Google Scholar 

  • Juang LH, Wu MN (2010) MRI brain lesion image detection based on color-converted k-means clustering segmentation. Measurement 43:941–949

    Article  Google Scholar 

  • Koh KH, Shen WA, Shuter B, Kassim AA (2009) Segmentation of kidney cortex in MRI studies: a constrained morphological 3D h-maxima transform approach. Intern J Med Eng Inf 1:330–341

    Google Scholar 

  • Li Y, Shen Y (2010) An automatic fuzzy c-means algorithm for image segmentation. Soft Comput 14:123–128

    Article  Google Scholar 

  • Natarajan P, Krishnan N, Kenkre NS, Nancy S, Singh BP (2012) Tumor detection using threshold operation in MR brain images, IEEE Int Conf Comput Intell Comput Res, pp 1-4

  • Nyul LG, Udupa JK (1999) On standardizing the MR image intensity scale. Magn Reson Med 42:1072–1081

    Article  Google Scholar 

  • Roslan R, Jamil N, Mahmad R (2011) Skull stripping magnetic resonance images brain images: region growing versus mathematical morphology. Int J Comput Int Syst Ind Manag Appl 3:150–158

    Google Scholar 

  • Smith S (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  Google Scholar 

  • Soille P (1999) Morphological image analysis: principles and applications, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45:427–437

    Article  Google Scholar 

  • Wells WM, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15:429–442

    Article  Google Scholar 

  • Xu Z, Wu J (2010) Intuitionistic fuzzy c-means clustering algorithms. J Syst Eng Electron 21:580–590

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao F, Jiao L, Liu H (2013) Kernel generalized fuzzy c-means clustering with spatial information for image segmentation. Digit Signal Process. 23:184–199

    Article  MathSciNet  Google Scholar 

  • Zhou D, Zhou H (2014) A modified strategy of fuzzy clustering algorithm for image segmentation. Soft Comput, pp 1–12. doi:10.1007/s00500-014-1481-8

  • Zhung Y, Udupa JK (2009) Intensity standardization simplifies brain MR image segmentation. Comput Vis Image Underst 113:1095–1103

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by UGC-BSR-Research fellowship in Mathematical Sciences—2013–2014. The authors wish to thank all the reviewers and associate editor for their fruitful comments and suggestions for significant improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balasubramaniam.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananthi, V.P., Balasubramaniam, P. & Kalaiselvi, T. A new fuzzy clustering algorithm for the segmentation of brain tumor. Soft Comput 20, 4859–4879 (2016). https://doi.org/10.1007/s00500-015-1775-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1775-5

Keywords

Navigation