[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Introduction

Training and assessment outside of the operating room is crucial for minimally invasive surgery due to steep learning curves. Thus, we have developed and validated the sensor- and expert model-based laparoscopic training system, the iSurgeon.

Materials

Participants of different experience levels (novice, intermediate, expert) performed four standardized laparoscopic knots. Instruments and surgeons’ joint motions were tracked with an NDI Polaris camera and Microsoft Kinect v1. With frame-by-frame image analysis, the key steps of suturing and knot tying were identified and registered with motion data. Construct validity, concurrent validity, and test–retest reliability were analyzed. The Objective Structured Assessment of Technical Skills (OSATS) was used as the gold standard for concurrent validity.

Results

The system showed construct validity by discrimination between experience levels by parameters such as time (novice = 442.9 ± 238.5 s; intermediate = 190.1 ± 50.3 s; expert = 115.1 ± 29.1 s; p < 0.001), total path length (novice = 18,817 ± 10318 mm; intermediate = 9995 ± 3286 mm; expert = 7265 ± 2232 mm; p < 0.001), average speed (novice = 42.9 ± 8.3 mm/s; intermediate = 52.7 ± 11.2 mm/s; expert = 63.6 ± 12.9 mm/s; p < 0.001), angular path (novice = 20,573 ± 12,611°; intermediate = 8652 ± 2692°; expert = 5654 ± 1746°; p < 0.001), number of movements (novice = 2197 ± 1405; intermediate = 987 ± 367; expert = 743 ± 238; p < 0.001), number of movements per second (novice = 5.0 ± 1.4; intermediate = 5.2 ± 1.5; expert = 6.6 ± 1.6; p = 0.025), and joint angle range (for different axes and joints all p < 0.001). Concurrent validity of OSATS and iSurgeon parameters was established. Test–retest reliability was given for 7 out of 8 parameters. The key steps “wrapping the thread around the instrument” and “needle positioning” were most difficult to learn.

Conclusion

Validity and reliability of the self-developed sensor-and expert model-based laparoscopic training system “iSurgeon” were established. Using multiple parameters proved more reliable than single metric parameters. Wrapping of the needle around the thread and needle positioning were identified as difficult key steps for laparoscopic suturing and knot tying. The iSurgeon could generate automated real-time feedback based on expert models which may result in shorter learning curves for laparoscopic tasks. Our next steps will be the implementation and evaluation of full procedural training in an experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Horeman T, van Delft F, Blikkendaal MD, Dankelman J, van den Dobbelsteen JJ, Jansen FW (2014) Learning from visual force feedback in box trainers: tissue manipulation in laparoscopic surgery. Surg Endosc 28(6):1961–1970. doi:10.1007/s00464-014-3425-x

    PubMed  Google Scholar 

  2. Gozen AS, Akin Y (2015) Are structured curriculums for laparoscopic training useful? A review of current literature. Curr Opin Urol 25(2):163–167. doi:10.1097/mou.0000000000000138

    Article  PubMed  Google Scholar 

  3. Nicolau S, Soler L, Mutter D, Marescaux J (2011) Augmented reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–201. doi:10.1016/j.suronc.2011.07.002

    Article  PubMed  Google Scholar 

  4. Allen BF, Kasper F, Nataneli G, Dutson E, Faloutsos P (2011) Visual tracking of laparoscopic instruments in standard training environments. Stud Health Technol Inform 163:11–17

    PubMed  Google Scholar 

  5. Schulman KA, Kim JJ (2000) Medical errors: how the US Government is addressing the problem. Curr Control Trials Cardiovasc Med 1(1):35–37. doi:10.1186/cvm-1-1-035

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carter BN (1952) The fruition of Halsted’s concept of surgical training. Surgery 32(3):518–527

    CAS  PubMed  Google Scholar 

  7. Brunt LM (2014) Celebrating a decade of innovation in surgical education. Bull Am Coll Surg 99(11):10–15

    PubMed  Google Scholar 

  8. Giannotti D, Patrizi G, Casella G, Di Rocco G, Marchetti M, Frezzotti F, Bernieri MG, Vestri AR, Redler A (2014) Can virtual reality simulators be a certification tool for bariatric surgeons? Surg Endosc 28(1):242–248. doi:10.1007/s00464-013-3179-x

    Article  PubMed  Google Scholar 

  9. Soper NJ, Fried GM (2008) The fundamentals of laparoscopic surgery: its time has come. Bull Am Coll Surg 93(9):30–32

    PubMed  Google Scholar 

  10. Nickel F, Brzoska JA, Gondan M, Rangnick HM, Chu J, Kenngott HG, Linke GR, Kadmon M, Fischer L, Muller-Stich BP (2015) Virtual reality training versus blended learning of laparoscopic cholecystectomy: a randomized controlled trial with laparoscopic novices. Medicine (Baltimore) 94(20):e764. doi:10.1097/md.0000000000000764

    Article  Google Scholar 

  11. Moorthy K, Munz Y, Sarker SK, Darzi A (2003) Objective assessment of technical skills in surgery. BMJ 327(7422):1032–1037. doi:10.1136/bmj.327.7422.1032

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nickel F, Hendrie JD, Stock C, Salama M, Preukschas AA, Senft JD, Kowalewski KF, Wagner M, Kenngott HG, Linke GR, Fischer L, Muller-Stich BP (2016) Direct observation versus endoscopic video recording-based rating with the objective structured assessment of technical skills for training of laparoscopic cholecystectomy. Eur Surg Res 57(1–2):1–9. doi:10.1159/000444449

    Article  PubMed  Google Scholar 

  13. Nickel F, Bintintan VV, Gehrig T, Kenngott HG, Fischer L, Gutt CN, Muller-Stich BP (2013) Virtual reality does not meet expectations in a pilot study on multimodal laparoscopic surgery training. World J Surg 37(5):965–973. doi:10.1007/s00268-013-1963-3

    Article  PubMed  Google Scholar 

  14. Allen B, Nistor V, Dutson E, Carman G, Lewis C, Faloutsos P (2010) Support vector machines improve the accuracy of evaluation for the performance of laparoscopic training tasks. Surg Endosc 24(1):170–178. doi:10.1007/s00464-009-0556-6

    Article  PubMed  Google Scholar 

  15. Rosen J, Brown JD, Barreca M, Chang L, Hannaford B, Sinanan M (2002) The blue Dragon: a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment. Stud Health Technol Inform 85:412–418

    PubMed  Google Scholar 

  16. Sanchez-Margallo JA, Sanchez-Margallo FM, Pagador Carrasco JB, Oropesa Garcia I, Gomez Aguilera EJ, Moreno del Pozo J (2014) Usefulness of an optical tracking system in laparoscopic surgery for motor skills assessment. Cirugia espanola 92(6):421–428. doi:10.1016/j.ciresp.2013.01.006

    Article  PubMed  Google Scholar 

  17. Chin KJ, Tse C, Chan V, Tan JS, Lupu CM, Hayter M (2011) Hand motion analysis using the imperial college surgical assessment device: validation of a novel and objective performance measure in ultrasound-guided peripheral nerve blockade. Reg Anesth Pain Med 36(3):213–219. doi:10.1097/AAP.0b013e31820d4305

    Article  PubMed  Google Scholar 

  18. Hance J, Aggarwal R, Moorthy K, Munz Y, Undre S, Darzi A (2005) Assessment of psychomotor skills acquisition during laparoscopic cholecystectomy courses. Am J Surg 190(3):507–511. doi:10.1016/j.amjsurg.2005.05.043

    Article  PubMed  Google Scholar 

  19. Mason JD, Ansell J, Warren N, Torkington J (2013) Is motion analysis a valid tool for assessing laparoscopic skill? Surg Endosc 27(5):1468–1477. doi:10.1007/s00464-012-2631-7

    Article  PubMed  Google Scholar 

  20. Kenngott HG, Wunscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Muller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc. doi:10.1007/s00464-015-4094-0

    Google Scholar 

  21. Nickel F, Kenngott HG, Neuhaus J, Sommer CM, Gehrig T, Kolb A, Gondan M, Radeleff BA, Schaible A, Meinzer HP, Gutt CN, Muller-Stich BP (2013) Navigation system for minimally invasive esophagectomy: experimental study in a porcine model. Surg Endosc 27(10):3663–3670. doi:10.1007/s00464-013-2941-4

    Article  PubMed  Google Scholar 

  22. Emam TA, Hanna GB, Kimber C, Cuschieri A (2000) Differences between experts and trainees in the motion pattern of the dominant upper limb during intracorporeal endoscopic knotting. Dig Surg 17(2):120–123 (discussion 124-125)

    Article  CAS  PubMed  Google Scholar 

  23. Satava RM, Cuschieri A, Hamdorf J (2003) Metrics for objective Assessment. Surg Endosc 17(2):220–226. doi:10.1007/s00464-002-8869-8

    Article  CAS  PubMed  Google Scholar 

  24. Kowalewski TM, White LW, Lendvay TS, Jiang IS, Sweet R, Wright A, Hannaford B, Sinanan MN (2014) Beyond task time: automated measurement augments fundamentals of laparoscopic skills methodology. J Surg Res 192(2):329–338. doi:10.1016/j.jss.2014.05.077

    Article  PubMed  Google Scholar 

  25. Oropesa I, Chmarra MK, Sanchez-Gonzalez P, Lamata P, Rodrigues SP, Enciso S, Sanchez-Margallo FM, Jansen FW, Dankelman J, Gomez EJ (2013) Relevance of motion-related assessment metrics in laparoscopic surgery. Surg Innov 20(3):299–312. doi:10.1177/1553350612459808

    Article  PubMed  Google Scholar 

  26. van Hove PD, Tuijthof GJ, Verdaasdonk EG, Stassen LP, Dankelman J (2010) Objective assessment of technical surgical skills. Br J Surg 97(7):972–987. doi:10.1002/bjs.7115

    Article  PubMed  Google Scholar 

  27. Woodrum DT, Andreatta PB, Yellamanchilli RK, Feryus L, Gauger PG, Minter RM (2006) Construct validity of the LapSim laparoscopic surgical simulator. Am J Surg 191(1):28–32. doi:10.1016/j.amjsurg.2005.10.018

    Article  PubMed  Google Scholar 

  28. Nickel F, Jede F, Minassian A, Gondan M, Hendrie JD, Gehrig T, Linke GR, Kadmon M, Fischer L, Müller-Stich BP (2014) One or two trainees per workplace in a structured multimodality training curriculum for laparoscopic surgery? Study protocol for a randomized controlled trial—DRKS00004675. Trials 15:137. doi:10.1186/1745-6215-15-137

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aggarwal R, Grantcharov T, Moorthy K, Milland T, Papasavas P, Dosis A, Bello F, Darzi A (2007) An evaluation of the feasibility, validity, and reliability of laparoscopic skills assessment in the operating room. Ann Surg 245(6):992–999. doi:10.1097/01.sla.0000262780.17950.e5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sedlack RE (2011) Validation process for new endoscopy teaching tools. Tech Gastrointest Endosc 13(2):151–154. doi:10.1016/j.tgie.2011.01.007

    Article  Google Scholar 

  31. Nickel F, Hendrie JD, Kowalewski KF, Bruckner T, Garrow CR, Mantel M, Kenngott HG, Romero P, Fischer L, Muller-Stich BP (2016) Sequential learning of psychomotor and visuospatial skills for laparoscopic suturing and knot tying-a randomized controlled trial “The Shoebox Study” DRKS00008668. Langenbecks Arch Surg. doi:10.1007/s00423-016-1421-4

    PubMed  Google Scholar 

  32. Chang OH, King LP, Modest AM, Hur HC (2015) Developing an Objective Structured Assessment of Technical Skills for Laparoscopic Suturing and Intracorporeal Knot Tying. J Surg Educ. doi:10.1016/j.jsurg.2015.10.006

    Google Scholar 

  33. Dawson B, Trapp RG (2004) Basic & clinical biostatistics. Lange Medical Books/McGraw-Hill, New York, pp 192–196

    Google Scholar 

  34. Reznick R, Regehr G, MacRae H, Martin J, McCulloch W (1997) Testing technical skill via an innovative “bench station” examination. Am J Surg 173(3):226–230

    Article  CAS  PubMed  Google Scholar 

  35. Hagelsteen K, Sevonius D, Bergenfelz A, Ekelund M (2016) Simball box for laparoscopic training with advanced 4D motion analysis of skills. Surg Innov. doi:10.1177/1553350616628678

    PubMed  Google Scholar 

  36. Smith CD, Farrell TM, McNatt SS, Metreveli RE (2001) Assessing laparoscopic manipulative skills. Am J Surg 181(6):547–550

    Article  CAS  PubMed  Google Scholar 

  37. Lee JH, Nam BH, Ryu KW, Ryu SY, Park YK, Kim S, Kim YW (2015) Comparison of outcomes after laparoscopy-assisted and open total gastrectomy for early gastric cancer. Br J Surg 102(12):1500–1505. doi:10.1002/bjs.9902

    Article  CAS  PubMed  Google Scholar 

  38. Lenoir C, Steinbrecher H (2010) Ergonomics, surgeon comfort, and theater checklists in pediatric laparoscopy. J Laparoendosc Adv Surg Tech A 20(3):281–291. doi:10.1089/lap.2009.0226

    Article  PubMed  Google Scholar 

  39. Smith WD, Forkey DL, Berguer R (1998) The Virtual Instrumentation (VI) Laboratory facilitates customized on-site ergonomic analysis of minimally invasive surgery. Stud Health Technol Inform 50:240–245

    CAS  PubMed  Google Scholar 

  40. Berguer R, Forkey D, Smith W (1999) Ergonomic problems associated with laparoscopic surgery. Surg Endosc 13(5):466–468

    Article  CAS  PubMed  Google Scholar 

  41. Berguer R, Rab GT, Abu-Ghaida H, Alarcon A, Chung J (1997) A comparison of surgeons’ posture during laparoscopic and open surgical procedures. Surg Endosc 11(2):139–142

    Article  CAS  PubMed  Google Scholar 

  42. Hansen AJ, Schlinkert RT (2005) Hand movements in laparoscopic suturing: a simple vector analysis. Surg Endosc 19(3):412–417. doi:10.1007/s00464-004-8229-y

    Article  CAS  PubMed  Google Scholar 

  43. Weiss A, Hirshberg D, Black MJ Home 3D body scans from noisy image and range data. In: Computer Vision (ICCV), 2011 IEEE International Conference on, 6–13 Nov. 2011 pp 1951–1958. doi:10.1109/ICCV.2011.6126465

  44. Jingbo Z, Bunn FE, Perron JM, Shen E, Allison RS (2015) Gait assessment using the Kinect RGB-D sensor. Conf Proc IEEE Eng Med Biol Soc 2015:6679–6683. doi:10.1109/embc.2015.7319925

    Google Scholar 

  45. Ruff J, Wang TL, Quatman-Yates CC, Phieffer LS, Quatman CE (2015) Commercially available gaming systems as clinical assessment tools to improve value in the orthopaedic setting: a systematic review. Injury 46(2):178–183. doi:10.1016/j.injury.2014.08.047

    Article  PubMed  Google Scholar 

  46. Korndorffer JR Jr, Kasten SJ, Downing SM (2010) A call for the utilization of consensus standards in the surgical education literature. Am J Surg 199(1):99–104. doi:10.1016/j.amjsurg.2009.08.018

    Article  PubMed  Google Scholar 

  47. Fried GM, Feldman LS, Vassiliou MC, Fraser SA, Stanbridge D, Ghitulescu G, Andrew CG (2004) Proving the value of simulation in laparoscopic surgery. Ann Surg 240(3):518–525 (discussion 525-518)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miyazaki D, Ebihara Y, Hirano S (2015) A New Technique for Making the Aberdeen Knot in Laparoscopic Surgery. J Laparoendosc Adv Surg Tech A 25(6):499–502. doi:10.1089/lap.2014.0558

    Article  PubMed  Google Scholar 

  49. Endo T, Nagasawa K, Umemura K, Baba T, Henmi H, Saito T (2011) A remarkably easy knot-tying technique for single-incision laparoscopic surgery with the SILS port for gynecologic diseases. J Minim Invasive Gynecol 18(4):500–502. doi:10.1016/j.jmig.2011.03.014

    Article  PubMed  Google Scholar 

  50. Joice P, Hanna GB, Cuschieri A (1998) Ergonomic evaluation of laparoscopic bowel suturing. Am J Surg 176(4):373–378

    Article  CAS  PubMed  Google Scholar 

  51. Chung J, Sackier J (1998) A method of objectively evaluating improvements in laparoscopic skills. Surg Endosc 12(9):1111–1116

    Article  CAS  PubMed  Google Scholar 

  52. Willis RE, Richa J, Oppeltz R, Nguyen P, Wagner K, Van Sickle KR, Dent DL (2012) Comparing three pedagogical approaches to psychomotor skills acquisition. Am J Surg 203(1):8–13. doi:10.1016/j.amjsurg.2011.07.002

    Article  PubMed  Google Scholar 

  53. Szabo Z, Hunter J, Berci G, Sackier J, Cuschieri A (1994) Analysis of surgical movements during suturing in laparoscopy. Endosc Surg Allied Technol 2(1):55–61

    CAS  PubMed  Google Scholar 

  54. Romero P, Brands O, Nickel F, Muller B, Gunther P, Holland-Cunz S (2014) Intracorporal suturing–driving license necessary? J Pediatr Surg 49(7):1138–1141. doi:10.1016/j.jpedsurg.2013.12.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study is part of Mr. Karl-Friedrich Kowalewski’s doctoral thesis at Heidelberg University.

Funding

The present research was conducted within the setting of the SFB/Transregio 125 “Cognition-Guided Surgery” funded by the German Research Foundation. It is also sponsored by the European Social Fund of the State Baden Wuerttemberg.

Author contributions

Kowalewski, Nickel, Hendrie, Müller-Stich, Speidel, and Kenngott contributed to study conception and design; Kowalewski, Schmidt, Hendrie, Garrow Paul, Bodenstedt, and Adigüzel participated in acquisition of data; Bruckner, Kowalewski, Proctor, Bodenstedt, Garrow, Kenngott, Erben A, and Adiüzel performed the statistical analysis; Kowalewski, Nickel, Bruckner, Proctor, Schmidt, Garrow, Bodenstedt, and Erben A are involved in analysis and interpretation of data; Kowalewski, Nickel, Hendrie, Paul, Garrow, and Erben Y drafted the manuscript; Müller-Stich, Speidel, Kenngott, Bruckner, and Erben Y made critical revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Nickel.

Ethics declarations

Disclosures

Felix Nickel reports receiving travel support for conference participation as well as equipment provided for laparoscopic surgery courses by KARL STORZ, Johnson & Johnson, and Medtronic. Karl-Friedrich Kowalewski, Jonathan D Hendrie, Mona W Schmidt, Thomas Bruckner, Sai Paul, Sebastian Bodenstedt, Tanja Proctor, Carly R Garrow, Andreas Erben, Young Erben, Davud Adigüzel, Hannes G Kenngott, Stefanie Speidel, and Beat P Müller-Stich have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalewski, KF., Hendrie, J.D., Schmidt, M.W. et al. Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg Endosc 31, 2155–2165 (2017). https://doi.org/10.1007/s00464-016-5213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-016-5213-2

Keywords

Navigation