Abstract
Introduction
Training and assessment outside of the operating room is crucial for minimally invasive surgery due to steep learning curves. Thus, we have developed and validated the sensor- and expert model-based laparoscopic training system, the iSurgeon.
Materials
Participants of different experience levels (novice, intermediate, expert) performed four standardized laparoscopic knots. Instruments and surgeons’ joint motions were tracked with an NDI Polaris camera and Microsoft Kinect v1. With frame-by-frame image analysis, the key steps of suturing and knot tying were identified and registered with motion data. Construct validity, concurrent validity, and test–retest reliability were analyzed. The Objective Structured Assessment of Technical Skills (OSATS) was used as the gold standard for concurrent validity.
Results
The system showed construct validity by discrimination between experience levels by parameters such as time (novice = 442.9 ± 238.5 s; intermediate = 190.1 ± 50.3 s; expert = 115.1 ± 29.1 s; p < 0.001), total path length (novice = 18,817 ± 10318 mm; intermediate = 9995 ± 3286 mm; expert = 7265 ± 2232 mm; p < 0.001), average speed (novice = 42.9 ± 8.3 mm/s; intermediate = 52.7 ± 11.2 mm/s; expert = 63.6 ± 12.9 mm/s; p < 0.001), angular path (novice = 20,573 ± 12,611°; intermediate = 8652 ± 2692°; expert = 5654 ± 1746°; p < 0.001), number of movements (novice = 2197 ± 1405; intermediate = 987 ± 367; expert = 743 ± 238; p < 0.001), number of movements per second (novice = 5.0 ± 1.4; intermediate = 5.2 ± 1.5; expert = 6.6 ± 1.6; p = 0.025), and joint angle range (for different axes and joints all p < 0.001). Concurrent validity of OSATS and iSurgeon parameters was established. Test–retest reliability was given for 7 out of 8 parameters. The key steps “wrapping the thread around the instrument” and “needle positioning” were most difficult to learn.
Conclusion
Validity and reliability of the self-developed sensor-and expert model-based laparoscopic training system “iSurgeon” were established. Using multiple parameters proved more reliable than single metric parameters. Wrapping of the needle around the thread and needle positioning were identified as difficult key steps for laparoscopic suturing and knot tying. The iSurgeon could generate automated real-time feedback based on expert models which may result in shorter learning curves for laparoscopic tasks. Our next steps will be the implementation and evaluation of full procedural training in an experimental model.
Similar content being viewed by others
References
Horeman T, van Delft F, Blikkendaal MD, Dankelman J, van den Dobbelsteen JJ, Jansen FW (2014) Learning from visual force feedback in box trainers: tissue manipulation in laparoscopic surgery. Surg Endosc 28(6):1961–1970. doi:10.1007/s00464-014-3425-x
Gozen AS, Akin Y (2015) Are structured curriculums for laparoscopic training useful? A review of current literature. Curr Opin Urol 25(2):163–167. doi:10.1097/mou.0000000000000138
Nicolau S, Soler L, Mutter D, Marescaux J (2011) Augmented reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–201. doi:10.1016/j.suronc.2011.07.002
Allen BF, Kasper F, Nataneli G, Dutson E, Faloutsos P (2011) Visual tracking of laparoscopic instruments in standard training environments. Stud Health Technol Inform 163:11–17
Schulman KA, Kim JJ (2000) Medical errors: how the US Government is addressing the problem. Curr Control Trials Cardiovasc Med 1(1):35–37. doi:10.1186/cvm-1-1-035
Carter BN (1952) The fruition of Halsted’s concept of surgical training. Surgery 32(3):518–527
Brunt LM (2014) Celebrating a decade of innovation in surgical education. Bull Am Coll Surg 99(11):10–15
Giannotti D, Patrizi G, Casella G, Di Rocco G, Marchetti M, Frezzotti F, Bernieri MG, Vestri AR, Redler A (2014) Can virtual reality simulators be a certification tool for bariatric surgeons? Surg Endosc 28(1):242–248. doi:10.1007/s00464-013-3179-x
Soper NJ, Fried GM (2008) The fundamentals of laparoscopic surgery: its time has come. Bull Am Coll Surg 93(9):30–32
Nickel F, Brzoska JA, Gondan M, Rangnick HM, Chu J, Kenngott HG, Linke GR, Kadmon M, Fischer L, Muller-Stich BP (2015) Virtual reality training versus blended learning of laparoscopic cholecystectomy: a randomized controlled trial with laparoscopic novices. Medicine (Baltimore) 94(20):e764. doi:10.1097/md.0000000000000764
Moorthy K, Munz Y, Sarker SK, Darzi A (2003) Objective assessment of technical skills in surgery. BMJ 327(7422):1032–1037. doi:10.1136/bmj.327.7422.1032
Nickel F, Hendrie JD, Stock C, Salama M, Preukschas AA, Senft JD, Kowalewski KF, Wagner M, Kenngott HG, Linke GR, Fischer L, Muller-Stich BP (2016) Direct observation versus endoscopic video recording-based rating with the objective structured assessment of technical skills for training of laparoscopic cholecystectomy. Eur Surg Res 57(1–2):1–9. doi:10.1159/000444449
Nickel F, Bintintan VV, Gehrig T, Kenngott HG, Fischer L, Gutt CN, Muller-Stich BP (2013) Virtual reality does not meet expectations in a pilot study on multimodal laparoscopic surgery training. World J Surg 37(5):965–973. doi:10.1007/s00268-013-1963-3
Allen B, Nistor V, Dutson E, Carman G, Lewis C, Faloutsos P (2010) Support vector machines improve the accuracy of evaluation for the performance of laparoscopic training tasks. Surg Endosc 24(1):170–178. doi:10.1007/s00464-009-0556-6
Rosen J, Brown JD, Barreca M, Chang L, Hannaford B, Sinanan M (2002) The blue Dragon: a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment. Stud Health Technol Inform 85:412–418
Sanchez-Margallo JA, Sanchez-Margallo FM, Pagador Carrasco JB, Oropesa Garcia I, Gomez Aguilera EJ, Moreno del Pozo J (2014) Usefulness of an optical tracking system in laparoscopic surgery for motor skills assessment. Cirugia espanola 92(6):421–428. doi:10.1016/j.ciresp.2013.01.006
Chin KJ, Tse C, Chan V, Tan JS, Lupu CM, Hayter M (2011) Hand motion analysis using the imperial college surgical assessment device: validation of a novel and objective performance measure in ultrasound-guided peripheral nerve blockade. Reg Anesth Pain Med 36(3):213–219. doi:10.1097/AAP.0b013e31820d4305
Hance J, Aggarwal R, Moorthy K, Munz Y, Undre S, Darzi A (2005) Assessment of psychomotor skills acquisition during laparoscopic cholecystectomy courses. Am J Surg 190(3):507–511. doi:10.1016/j.amjsurg.2005.05.043
Mason JD, Ansell J, Warren N, Torkington J (2013) Is motion analysis a valid tool for assessing laparoscopic skill? Surg Endosc 27(5):1468–1477. doi:10.1007/s00464-012-2631-7
Kenngott HG, Wunscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Muller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc. doi:10.1007/s00464-015-4094-0
Nickel F, Kenngott HG, Neuhaus J, Sommer CM, Gehrig T, Kolb A, Gondan M, Radeleff BA, Schaible A, Meinzer HP, Gutt CN, Muller-Stich BP (2013) Navigation system for minimally invasive esophagectomy: experimental study in a porcine model. Surg Endosc 27(10):3663–3670. doi:10.1007/s00464-013-2941-4
Emam TA, Hanna GB, Kimber C, Cuschieri A (2000) Differences between experts and trainees in the motion pattern of the dominant upper limb during intracorporeal endoscopic knotting. Dig Surg 17(2):120–123 (discussion 124-125)
Satava RM, Cuschieri A, Hamdorf J (2003) Metrics for objective Assessment. Surg Endosc 17(2):220–226. doi:10.1007/s00464-002-8869-8
Kowalewski TM, White LW, Lendvay TS, Jiang IS, Sweet R, Wright A, Hannaford B, Sinanan MN (2014) Beyond task time: automated measurement augments fundamentals of laparoscopic skills methodology. J Surg Res 192(2):329–338. doi:10.1016/j.jss.2014.05.077
Oropesa I, Chmarra MK, Sanchez-Gonzalez P, Lamata P, Rodrigues SP, Enciso S, Sanchez-Margallo FM, Jansen FW, Dankelman J, Gomez EJ (2013) Relevance of motion-related assessment metrics in laparoscopic surgery. Surg Innov 20(3):299–312. doi:10.1177/1553350612459808
van Hove PD, Tuijthof GJ, Verdaasdonk EG, Stassen LP, Dankelman J (2010) Objective assessment of technical surgical skills. Br J Surg 97(7):972–987. doi:10.1002/bjs.7115
Woodrum DT, Andreatta PB, Yellamanchilli RK, Feryus L, Gauger PG, Minter RM (2006) Construct validity of the LapSim laparoscopic surgical simulator. Am J Surg 191(1):28–32. doi:10.1016/j.amjsurg.2005.10.018
Nickel F, Jede F, Minassian A, Gondan M, Hendrie JD, Gehrig T, Linke GR, Kadmon M, Fischer L, Müller-Stich BP (2014) One or two trainees per workplace in a structured multimodality training curriculum for laparoscopic surgery? Study protocol for a randomized controlled trial—DRKS00004675. Trials 15:137. doi:10.1186/1745-6215-15-137
Aggarwal R, Grantcharov T, Moorthy K, Milland T, Papasavas P, Dosis A, Bello F, Darzi A (2007) An evaluation of the feasibility, validity, and reliability of laparoscopic skills assessment in the operating room. Ann Surg 245(6):992–999. doi:10.1097/01.sla.0000262780.17950.e5
Sedlack RE (2011) Validation process for new endoscopy teaching tools. Tech Gastrointest Endosc 13(2):151–154. doi:10.1016/j.tgie.2011.01.007
Nickel F, Hendrie JD, Kowalewski KF, Bruckner T, Garrow CR, Mantel M, Kenngott HG, Romero P, Fischer L, Muller-Stich BP (2016) Sequential learning of psychomotor and visuospatial skills for laparoscopic suturing and knot tying-a randomized controlled trial “The Shoebox Study” DRKS00008668. Langenbecks Arch Surg. doi:10.1007/s00423-016-1421-4
Chang OH, King LP, Modest AM, Hur HC (2015) Developing an Objective Structured Assessment of Technical Skills for Laparoscopic Suturing and Intracorporeal Knot Tying. J Surg Educ. doi:10.1016/j.jsurg.2015.10.006
Dawson B, Trapp RG (2004) Basic & clinical biostatistics. Lange Medical Books/McGraw-Hill, New York, pp 192–196
Reznick R, Regehr G, MacRae H, Martin J, McCulloch W (1997) Testing technical skill via an innovative “bench station” examination. Am J Surg 173(3):226–230
Hagelsteen K, Sevonius D, Bergenfelz A, Ekelund M (2016) Simball box for laparoscopic training with advanced 4D motion analysis of skills. Surg Innov. doi:10.1177/1553350616628678
Smith CD, Farrell TM, McNatt SS, Metreveli RE (2001) Assessing laparoscopic manipulative skills. Am J Surg 181(6):547–550
Lee JH, Nam BH, Ryu KW, Ryu SY, Park YK, Kim S, Kim YW (2015) Comparison of outcomes after laparoscopy-assisted and open total gastrectomy for early gastric cancer. Br J Surg 102(12):1500–1505. doi:10.1002/bjs.9902
Lenoir C, Steinbrecher H (2010) Ergonomics, surgeon comfort, and theater checklists in pediatric laparoscopy. J Laparoendosc Adv Surg Tech A 20(3):281–291. doi:10.1089/lap.2009.0226
Smith WD, Forkey DL, Berguer R (1998) The Virtual Instrumentation (VI) Laboratory facilitates customized on-site ergonomic analysis of minimally invasive surgery. Stud Health Technol Inform 50:240–245
Berguer R, Forkey D, Smith W (1999) Ergonomic problems associated with laparoscopic surgery. Surg Endosc 13(5):466–468
Berguer R, Rab GT, Abu-Ghaida H, Alarcon A, Chung J (1997) A comparison of surgeons’ posture during laparoscopic and open surgical procedures. Surg Endosc 11(2):139–142
Hansen AJ, Schlinkert RT (2005) Hand movements in laparoscopic suturing: a simple vector analysis. Surg Endosc 19(3):412–417. doi:10.1007/s00464-004-8229-y
Weiss A, Hirshberg D, Black MJ Home 3D body scans from noisy image and range data. In: Computer Vision (ICCV), 2011 IEEE International Conference on, 6–13 Nov. 2011 pp 1951–1958. doi:10.1109/ICCV.2011.6126465
Jingbo Z, Bunn FE, Perron JM, Shen E, Allison RS (2015) Gait assessment using the Kinect RGB-D sensor. Conf Proc IEEE Eng Med Biol Soc 2015:6679–6683. doi:10.1109/embc.2015.7319925
Ruff J, Wang TL, Quatman-Yates CC, Phieffer LS, Quatman CE (2015) Commercially available gaming systems as clinical assessment tools to improve value in the orthopaedic setting: a systematic review. Injury 46(2):178–183. doi:10.1016/j.injury.2014.08.047
Korndorffer JR Jr, Kasten SJ, Downing SM (2010) A call for the utilization of consensus standards in the surgical education literature. Am J Surg 199(1):99–104. doi:10.1016/j.amjsurg.2009.08.018
Fried GM, Feldman LS, Vassiliou MC, Fraser SA, Stanbridge D, Ghitulescu G, Andrew CG (2004) Proving the value of simulation in laparoscopic surgery. Ann Surg 240(3):518–525 (discussion 525-518)
Miyazaki D, Ebihara Y, Hirano S (2015) A New Technique for Making the Aberdeen Knot in Laparoscopic Surgery. J Laparoendosc Adv Surg Tech A 25(6):499–502. doi:10.1089/lap.2014.0558
Endo T, Nagasawa K, Umemura K, Baba T, Henmi H, Saito T (2011) A remarkably easy knot-tying technique for single-incision laparoscopic surgery with the SILS port for gynecologic diseases. J Minim Invasive Gynecol 18(4):500–502. doi:10.1016/j.jmig.2011.03.014
Joice P, Hanna GB, Cuschieri A (1998) Ergonomic evaluation of laparoscopic bowel suturing. Am J Surg 176(4):373–378
Chung J, Sackier J (1998) A method of objectively evaluating improvements in laparoscopic skills. Surg Endosc 12(9):1111–1116
Willis RE, Richa J, Oppeltz R, Nguyen P, Wagner K, Van Sickle KR, Dent DL (2012) Comparing three pedagogical approaches to psychomotor skills acquisition. Am J Surg 203(1):8–13. doi:10.1016/j.amjsurg.2011.07.002
Szabo Z, Hunter J, Berci G, Sackier J, Cuschieri A (1994) Analysis of surgical movements during suturing in laparoscopy. Endosc Surg Allied Technol 2(1):55–61
Romero P, Brands O, Nickel F, Muller B, Gunther P, Holland-Cunz S (2014) Intracorporal suturing–driving license necessary? J Pediatr Surg 49(7):1138–1141. doi:10.1016/j.jpedsurg.2013.12.018
Acknowledgments
The present study is part of Mr. Karl-Friedrich Kowalewski’s doctoral thesis at Heidelberg University.
Funding
The present research was conducted within the setting of the SFB/Transregio 125 “Cognition-Guided Surgery” funded by the German Research Foundation. It is also sponsored by the European Social Fund of the State Baden Wuerttemberg.
Author contributions
Kowalewski, Nickel, Hendrie, Müller-Stich, Speidel, and Kenngott contributed to study conception and design; Kowalewski, Schmidt, Hendrie, Garrow Paul, Bodenstedt, and Adigüzel participated in acquisition of data; Bruckner, Kowalewski, Proctor, Bodenstedt, Garrow, Kenngott, Erben A, and Adiüzel performed the statistical analysis; Kowalewski, Nickel, Bruckner, Proctor, Schmidt, Garrow, Bodenstedt, and Erben A are involved in analysis and interpretation of data; Kowalewski, Nickel, Hendrie, Paul, Garrow, and Erben Y drafted the manuscript; Müller-Stich, Speidel, Kenngott, Bruckner, and Erben Y made critical revision.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Disclosures
Felix Nickel reports receiving travel support for conference participation as well as equipment provided for laparoscopic surgery courses by KARL STORZ, Johnson & Johnson, and Medtronic. Karl-Friedrich Kowalewski, Jonathan D Hendrie, Mona W Schmidt, Thomas Bruckner, Sai Paul, Sebastian Bodenstedt, Tanja Proctor, Carly R Garrow, Andreas Erben, Young Erben, Davud Adigüzel, Hannes G Kenngott, Stefanie Speidel, and Beat P Müller-Stich have no conflicts of interest or financial ties to disclose.
Rights and permissions
About this article
Cite this article
Kowalewski, KF., Hendrie, J.D., Schmidt, M.W. et al. Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg Endosc 31, 2155–2165 (2017). https://doi.org/10.1007/s00464-016-5213-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00464-016-5213-2