[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the recent decades, ion channels became the focus of cancer biologists, as many channels are overexpressed in tumour tissue and functionally they are linked to abnormal cell behaviour with processes including apoptosis, chemo- and radioresistance, proliferation and migration. KCa3.1 is a Ca2+-activated K+ channel that plays a central role in tumour progression in many cancer types. Therefore, the aim of the present study was to investigate KCa3.1 expression in pancreatic cancer cells and assess possible implications to disease progression. Using qPCR technique, we found abundant expression of KCa3.1 in pancreatic cancer cell lines. Patch clamp measurements on MiaPaCa-2 cells revealed a Ca2+-activated K+ current that matched biophysical characteristics as described for KCa3.1. Moreover, the current was sensitive to the commonly used channel modulators TRAM-34, clotrimazole and DC-EBIO, and it was abolished following transient gene knockdown of KCa3.1. We utilized both pharmacology and RNAi to assess a possible role of the channel in tumour cell behaviour. We found that the channel supported MiaPaCa-2 cell proliferation. Using RNAi protocols, we also identified KCa3.1 as important entity in cell invasion. However, TRAM-34 had unexpected stimulatory effects on cell migration and invasion estimated in various assays. Moreover, TRAM-34 increased intracellular Ca2+. In conclusion, we found prominent functional expression of KCa3.1 in pancreatic cancer cells. We provide evidence that the channel has a key role in cell proliferation and for the first time identify KCa3.1 as important entity in PDAC cell migration. We further reveal anomalous effects of TRAM-34.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdullaev IF, Rudkouskaya A, Mongin A, Kuo Y-H (2010) Calcium-activated potassium channels BK and IK1 are functionally expressed in human gliomas but do not regulate cell proliferation. PLoS One 5:e12304

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agarwal JJ, Zhu Y, Zhang QY, Mongin A, Hough LB (2013) TRAM-34, a putatively selective blocker of intermediate-conductance, calcium-activated potassium channels, inhibits cytochrome P450 activity. PLoS One 8:4–9

    Article  Google Scholar 

  3. Benzaquen L, Brugnara C, Byers HR, Gattoni-Celli S, Halperin J (1995) Clotrimazole inhbits cell proliferation in vitro and in vivo. Nat Med 1:534–540

    Article  CAS  PubMed  Google Scholar 

  4. Bernardini M, Pla AF, Prevarskaya N, Gkika D (2015) Human transient receptor potential (TRP) channels expression profiling in carcinogenesis. Int J Dev Biol 59:399–406

    Article  CAS  PubMed  Google Scholar 

  5. Bi D, Toyama K, Lemaitre V, Takai J, Fan F, Jenkins DP, Wulff H, Gutterman DD, Park F, Miura H (2013) The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem 288:15843–15853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bulk E, Ay A, Hammadi M, Ouadid-Ahidouch H, Hascher A, Rohde C, Thoennissen NH, Schmidt E, Marra A, Hillejan L, Jacobs AH, Klein H, Dugas M, Berdel WE, Müller-Tidow C, Schwab A (2015) Epigenetic dysregulation of KCa3.1 channels induces poor prognosis in lung cancer. Int J Cancer 137(6):1306–1317

    Article  CAS  PubMed  Google Scholar 

  7. Catacuzzeno L, Aiello F, Fioretti B, Sforna L, Castigli E, Ruggieri P, Tata AM, Calogero A, Franciolini F (2011) Serum-activated K+ and Cl currents underlay U87-MG glioblastoma cell migration. J Cell Physiol 226:1926–1933

    Article  CAS  PubMed  Google Scholar 

  8. Chadet S, Jelassi B, Wannous R, Angoulvant D, Chevalier S, Besson P, Roger S (2014) The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 35:1238–1247

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y-J, Raman G, Bodendiek S, O’Donnell ME, Wulff H (2011) The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a rat model of ischemia/reperfusion stroke. J CerebBlood Flow Metab 31:2363–2374

    Article  CAS  Google Scholar 

  10. Conductance PYIK, Conductance PXSC, Hede SE, Amstrup J, Christoffersen BC, Novak I (1999) Purinoceptors evoke different electrophysiological responses in pancreatic ducts. P2Y inhibits K+ conductance, and P2X stimulates cation conductance. J Biol Chem 274:31784–31791

    Article  Google Scholar 

  11. Conforti L, Petrovic M, Mohamm D, Ma Q, Barone S, Filipovich AH (2003) Hypoxia regulates expression and activity of Kv1.3 channels in T lymphocytes: a possible role in T cell proliferation. J Immunol 170:695–702

    Article  CAS  PubMed  Google Scholar 

  12. Crottès D, Félix R, Meley D, Chadet S, Herr F, Audiger C, Soriani O, Vandier C, Roger S, Angoulvant D, Velge-Roussel F (2016) Immature human dendritic cells enhance their migration through KCa3.1 channel activation. Cell Calcium 59:198–207

    Article  PubMed  Google Scholar 

  13. Cruse G (2006) Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 61:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cuddapah VA, Sontheimer H (2011) Ion channels and tranporters in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 301:541–549

    Article  Google Scholar 

  15. Dong H, Shim K-N, Li JMJ, Estrema C, Ornelas T, Nguyen F, Liu S, Ramamoorthy SL, Ho S, Carethers JM, Chow JYC (2010) Molecular mechanisms underlying Ca2+-mediated motility of human pancreatic duct cells. Am J Physiol Cell Physiol 299:C1493–C1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferreira R, Schlichter LC (2013) Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca2+ signaling, store refilling and migration of rat microglial cells. PLoS One 8:e62345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Franceschi L, Saadane N, Trudel M, Alper SL, Brugnara C, Beuzard Y (1994) Treatment with oral clotrimazole blocks Ca2+-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice: a model for therapy of sickle cell disease. J Clin Invest 93:1670–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Furukawa T, Duguid W, Rosenberg L, Viallet J, Galloway D, Tsao M (1996) Short communication long-term culture and immortalization of epithelial cells from normal adult human. Am J Pathol 148:1763–1770

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14:1–15

    Article  Google Scholar 

  20. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39:453–463

    CAS  PubMed  Google Scholar 

  21. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the channel, IKCa1 : a potential immunosuppressant. Proc Natl Acad Sci U S A 97:8151–8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grössinger EM, Weiss L, Zierler S, Rebhandl S, Krenn PW, Hinterseer E, Schmölzer J, Asslaber D, Hainzl S, Neureiter D, Egle P-HJ, Hartmann TN, Greil R, Kerschbaum HH (2014) Targeting proliferation of chronic lymphocytic leukemia (CLL) cells through KCa3.1 blockade. Leukemia 28:954–958

    Article  PubMed  Google Scholar 

  23. Hayashi M, Wang J, Hede SE, Novak I (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am J Physiol Cell Physiol 303:C151–C159

    Article  CAS  PubMed  Google Scholar 

  24. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho R (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249

    Article  CAS  PubMed  Google Scholar 

  25. Horng C-T, Chiang N-N, Chen I-L, Liang W-Z, Chen I-S, Kuo D-H, Shieh P-C, Jan C-R (2013) Effect of clotrimazole on cytosolic Ca2+ rise and viability in HA59T human hepatoma cells. J Recept Signal Transduct Res 33:89–95

    Article  CAS  PubMed  Google Scholar 

  26. Jacobsen KS, Zeeberg K, Sauter DRP, Poulsen K, Hoffmann EK, Schwab A (2013) The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration. Pflugers Arch 465:1753–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638

    Article  PubMed  Google Scholar 

  28. Jan CR, Tseng CJ, Chou KJCH (2000) Novel effects of clotrimazole on Ca2+ signaling in Madin Darby canine kidney cells. Life Sci 66:3–6

    Google Scholar 

  29. Jensen B, Strøbæk D, Christophersen P, Jørgensen T, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol Cell Physiol 275:848–856

    Google Scholar 

  30. Jung S, Kim K, Hille B, Nguyen TD, Koh D (2006) Pattern of Ca2+ increase determines the type of secretory mechanism activated in dog pancreatic duct epithelial cells. J Physiol 576:163–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kovalenko I, Glasauer A, Schöckel L, Sauter DRP (2016) Identification of KCa3.1 channel as a novel regulator of oxidative phosphorylation in a subset of pancreatic carcinoma cell lines. PLoS One 11:1–20

    Article  Google Scholar 

  32. Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackière F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28:1792–1806

    Article  CAS  PubMed  Google Scholar 

  33. Lang F, Shumilina E, Ritter M, Gulbins E, Vereninov A, Huber SM (2006) Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib Nephrol 152:142–160

    Article  CAS  PubMed  Google Scholar 

  34. Lee EL, Hasegawa Y, Shimizu T, Okada Y (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. Am J Physiol Cell Physiol 294:1398–1406

    Article  Google Scholar 

  35. Litan A, Langhans S (2015) Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosci 9:86. doi:10.3389/fncel.2015.00086

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lotz MM, Wang H, Song JC, Pories SE, Matthews JB (2004) K+ channel inhibition accelerates intestinal epithelial cell wound healing. Wound Repair Regen 12:565–574

    Article  PubMed  Google Scholar 

  37. Lutz TA, Wild S, Boutellier S, Sutter D, Volkert M, Scharrer E (1998) Hyperpolarization of the cell membrane of mouse hepatocytes by lactate, pyruvate, and fructose is due to Ca2+-dependent activation of K+ channels and of the Na/K+-ATPase. Biochim Biophys Acta 1372:359–369

    Article  CAS  PubMed  Google Scholar 

  38. Mazzuca MQ, Wlodek ME, Dragomir NM, Parkington HC, Tare M (2010) Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol 588:1997–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakajima T, Kubota N, Tsutsumi T, Oguri A, Imuta H, Jo T, Oonuma H, Soma M, Meguro K, Takano H, Nagase T, Nagata T (2009) Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells. Br J Pharmacol 156:420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol 287:C125–C134

    Article  CAS  PubMed  Google Scholar 

  41. Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J, Tsao MS (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157:1623–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh C-C (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164

    Article  CAS  PubMed  Google Scholar 

  43. Rodrigues A, Gibson G, Loannides C, Parke D (1987) Interactions of imidazole antifungal agents with purified cytochrome P-450 proteins. Biochem Pharmacol 36:4277–4281

    Article  CAS  PubMed  Google Scholar 

  44. Rooman I, Real FX (2012) Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut 61:449–458

    Article  PubMed  Google Scholar 

  45. Roy N, Hebrok M (2015) Regulation of cellular identity in cancer. Dev Cell 35:674–684

    Article  CAS  PubMed  Google Scholar 

  46. Ruggieri P, Mangino G, Fioretti B, Catacuzzeno L, Puca R, Ponti D, Miscusi M, Franciolini F, Ragona G, Calogero A (2012) The inhibition of KCa3.1 channels activity reduces cell motility in glioblastoma derived cancer stem cells. PLoS One 7:e47825

  47. Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R, Bubendorf L, Kunzelmann K (2012) Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 7:1–12

    Google Scholar 

  48. Sauter DRP, Novak I, Pedersen SF, Larsen EH, Hoffmann EK (2015) ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflugers Arch 467:1495–1508

    Article  CAS  PubMed  Google Scholar 

  49. Sauter DRP, Sørensen CE, Rapedius M (2016) pH-sensitive K+ channel TREK-1 is a novel target in pancreatic cancer Daniel. BBA - Mol Basis Dis 1862:1994–2003

    Article  CAS  Google Scholar 

  50. Schilling T, Eder C (2007) TRAM-34 inhibits nonselective cation channels. Pflugers Arch 454:559–563

    Article  CAS  PubMed  Google Scholar 

  51. Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913

    Article  CAS  PubMed  Google Scholar 

  52. Schwab A, Wulf A, Schulz C, Kessler W, Nechyporuk-Zloy V, Römer M, Reinhardt J, Weinhold D, Dieterich P, Stock C, Hebert SC (2006) Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol 206:86–94

    Article  CAS  PubMed  Google Scholar 

  53. Strøbaek D, Brown D, Jenkins D, Chen Y-J, Coleman N, Ando Y, Chiu P, Jørgensen S, Demnitz J, Wulff H, Christophersen P (2013) NS6180, a new KCa3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 168:432–444

    Article  PubMed  Google Scholar 

  54. Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev 5:231–246

    Article  PubMed  Google Scholar 

  55. Thompson-vest N, Shimizu Y, Hunne B, Furness JB (2006) The distribution of intermediate-conductance, calcium- activated, potassium ( IK ) channels in epithelial cells. J Anat 208:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wei C, Wang X, Zheng M, Cheng H (2012) Calcium gradients underlying cell migration. Curr Opin Cell Biol 24:254–261

    Article  CAS  PubMed  Google Scholar 

  57. Wienen F, Laug S, Baumann K, Schwab A, Just S, Holzgrabe U (2003) Determination of clotrimazole in mice plasma by capillary electrophoresis. J Pharm Biomed Anal 30:1879–1887

    Article  CAS  PubMed  Google Scholar 

  58. Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier J-M, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457

    Article  CAS  PubMed  Google Scholar 

  59. Xie R, Xu J, Wen G, Jin H, Liu X, Yang Y, Ji B, Jiang Y, Song P, Dong H, Tuo B (2014) The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular carcinoma cells induced by ATP. J Biol Chem 289:19137–19149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Y, Feng Y, Chen L (2015) Effects of intermediate-conductance Ca2+-activated K+ channels on human endometrial carcinoma cells. Cell Biochem Biophys 72:515–532

    Article  CAS  PubMed  Google Scholar 

  61. Zundler S, Caioni M, Müller M, Strauch U, Kunst C, Woelfel G (2016) ) K+ channel inhibition differentially regulates migration of intestinal epithelial cells in inflamed vs. non-inflamed conditions in a PI3K/Akt-mediated manner. PLoS One 11:0147736

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marie Curie Initial Training Network IonTraC (Grant Agreement No. 289648), by The Danish Council for Independent Research/Natural Sciences (DFF - 4002-00162) and the German Cancer Aid (Project No. 110261). We are grateful to Ph.D. student Marco Tozzi for helping out with Boyden chamber assays and to E.H. Larsen and E.K. Hoffmann for fruitful discussions. Technical assistance of Pernille Roshof and Sabine Mally is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Novak.

Ethics declarations

Conflicts of interest

None of the authors have any conflict of interests.

Ethical standards

All experiments were carried out in compliance to the current laws of Denmark and the UK.

Additional information

B. Bonito and DRP Sauter contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonito, B., Sauter, D.R.P., Schwab, A. et al. KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34. Pflugers Arch - Eur J Physiol 468, 1865–1875 (2016). https://doi.org/10.1007/s00424-016-1891-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1891-9

Keywords

Navigation