[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Post-concurrent exercise hemodynamics and cardiac autonomic modulation

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO2 peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (−13 ± 1 and −11 ± 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 ± 1.7 and +6.3 ± 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = −14.6 ± 3.6, R = −22.4 ± 3.5 and AR = −23.4 ± 2.4 ml; HR, A =+13 ± 2, R =+15 ± 2 vs. AR =+20 ± 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 ± 0.8, R = +1.0 ± 0.8 vs. AR = +1.2 ± 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate post-exercise hypotension, and increased cardiac sympathetic activation during the recovery period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American College of Sports Medicine (2006) ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Bennett T, Wilcox RG, Macdonald IA (1984) Post-exercise reduction of blood pressure in hypertensive men is not due to acute impairment of baroreflex function. Clin Sci (Lond) 67:97–103

    CAS  Google Scholar 

  • Bisquolo VA, Cardoso CG Jr, Ortega KC, Gusmao JL, Tinucci T, Negrao CE, Wajchenberg BL, Mion D Jr, Forjaz CL (2005) Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia. J Appl Physiol 98:866–871

    Article  PubMed  CAS  Google Scholar 

  • Brandao Rondon MU, Alves MJ, Braga AM, Teixeira OT, Barretto AC, Krieger EM, Negrao CE (2002) Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol 39:676–682

    Article  PubMed  Google Scholar 

  • Charkoudian N, Halliwill JR, Morgan BJ, Eisenach JH, Joyner MJ (2003) Influences of hydration on post-exercise cardiovascular control in humans. J Physiol 552:635–644

    Article  PubMed  CAS  Google Scholar 

  • Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560–2572

    Article  PubMed  CAS  Google Scholar 

  • Cole CR, Foody JM, Blackstone EH, Lauer MS (2000) Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort. Ann Intern Med 132:552–555

    PubMed  CAS  Google Scholar 

  • Cornelissen VA, Fagard RH (2004) Exercise intensity and postexercise hypotension. J Hypertens 22:1859–1861

    Article  PubMed  CAS  Google Scholar 

  • Dujic Z, Ivancev V, Valic Z, Bakovic D, Marinovic-Terzic I, Eterovic D, Wisloff U (2006) Postexercise hypotension in moderately trained athletes after maximal exercise. Med Sci Sports Exerc 38:318–322

    Article  PubMed  Google Scholar 

  • Forjaz CL, Santaella DF, Rezende LO, Barretto AC, Negrao CE (1998) Effect of exercise duration on the magnitude and duration of post-exercise hypotension. Arq Bras Cardiol 70:99–104

    Article  PubMed  CAS  Google Scholar 

  • Forjaz CL, Cardoso CG Jr, Rezk CC, Santaella DF, Tinucci T (2004) Postexercise hypotension and hemodynamics: the role of exercise intensity. J Sports Med Phys Fit 44:54–62

    CAS  Google Scholar 

  • Furlan R, Jacob G, Palazzolo L, Rimoldi A, Diedrich A, Harris PA, Porta A, Malliani A, Mosqueda-Garcia R, Robertson D (2001) Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms. Circulation 104:2932–2937

    Article  PubMed  CAS  Google Scholar 

  • Gotshall RW, Aten LA, Yumikura S (1994) Difference in the cardiovascular response to prolonged sitting in men and women. Can J Appl Physiol 19:215–225

    Article  PubMed  CAS  Google Scholar 

  • Halliwill JR, Taylor JA, Eckberg DL (1996) Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol 495(Pt 1):279–288

    PubMed  CAS  Google Scholar 

  • Halliwill JR, Minson CT, Joyner MJ (2000) Effect of systemic nitric oxide synthase inhibition on postexercise hypotension in humans. J Appl Physiol 89:1830–1836

    PubMed  CAS  Google Scholar 

  • Hanel B, Teunissen I, Rabol A, Warberg J, Secher NH (1997) Restricted postexercise pulmonary diffusion capacity and central blood volume depletion. J Appl Physiol 83:11–17

    PubMed  CAS  Google Scholar 

  • Hayes PM, Lucas JC, Shi X (2000) Importance of post-exercise hypotension in plasma volume restoration. Acta Physiol Scand 169:115–124

    Article  PubMed  CAS  Google Scholar 

  • Heffernan KS, Kelly EE, Collier SR, Fernhall B (2006) Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. Eur J Cardiovasc Prev Rehabil 13:80–86

    Article  PubMed  Google Scholar 

  • Jones NL, Campbell EJ, McHardy GJ, Higgs BE, Clode M (1967) The estimation of carbon dioxide pressure of mixed venous blood during exercise. Clin Sci 32:311–327

    PubMed  CAS  Google Scholar 

  • Jones H, George K, Edwards B, Atkinson G (2007) Is the magnitude of acute post-exercise hypotension mediated by exercise intensity or total work done? Eur J Appl Physiol 102:33–40

    Article  PubMed  Google Scholar 

  • Jungersten L, Ambring A, Wall B, Wennmalm A (1997) Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol 82:760–764

    Article  PubMed  CAS  Google Scholar 

  • Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ (2004) Parasympathetic effects on heart rate recovery after exercise. J Investig Med 52:394–401

    Article  PubMed  Google Scholar 

  • Kenny GP, Periard J, Journeay WS, Sigal RJ, Reardon FD (2003) Effect of exercise intensity on the postexercise sweating threshold. J Appl Physiol 95:2355–2360

    PubMed  Google Scholar 

  • Kraemer WJ, Fry AC (1995) Strength testing: development and evaluation of methodology. In: Maud P, Foster C (eds) Physiological assessment of human fitness. Human Kinetics, Champaign, pp 115–138

    Google Scholar 

  • MacDonald J, MacDougall J, Hogben C (1999) The effects of exercise intensity on post exercise hypotension. J Hum Hypertens 13:527–531

    Article  PubMed  CAS  Google Scholar 

  • Mark AL, Mancia G (1996) Cardiopulmonary baroreflex in humans. In: Rowell LB, Shepherd JT (eds) Handbook of physiology: a critical comprehensive presentation of physiological knowledge and concepts. Oxford University Press, New York, pp 795–813

    Google Scholar 

  • Mourot L, Bouhaddi M, Tordi N, Rouillon JD, Regnard J (2004) Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol 92:508–517

    Article  PubMed  Google Scholar 

  • Niemela KO, Palatsi IJ, Ikaheimo MJ, Takkunen JT, Vuori JJ (1984) Evidence of impaired left ventricular performance after an uninterrupted competitive 24 hour run. Circulation 70:350–356

    Article  PubMed  CAS  Google Scholar 

  • Parekh A, Lee CM (2005) Heart rate variability after isocaloric exercise bouts of different intensities. Med Sci Sports Exerc 37:599–605

    Article  PubMed  Google Scholar 

  • Patil RD, DiCarlo SE, Collins HL (1993) Acute exercise enhances nitric oxide modulation of vascular response to phenylephrine. Am J Physiol 265:H1184–H1188

    PubMed  CAS  Google Scholar 

  • Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004a) American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36:533–553

    Article  PubMed  Google Scholar 

  • Pescatello LS, Guidry MA, Blanchard BE, Kerr A, Taylor AL, Johnson AN, Maresh CM, Rodriguez N, Thompson PD (2004b) Exercise intensity alters postexercise hypotension. J Hypertens 22:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Piepoli M, Isea JE, Pannarale G, Adamopoulos S, Sleight P, Coats AJ (1994) Load dependence of changes in forearm and peripheral vascular resistance after acute leg exercise in man. J Physiol 478(Pt 2):357–362

    PubMed  Google Scholar 

  • Pricher MP, Holowatz LA, Williams JT, Lockwood JM, Halliwill JR (2004) Regional hemodynamics during postexercise hypotension. I. Splanchnic and renal circulations. J Appl Physiol 97:2065–2070

    Article  PubMed  Google Scholar 

  • Queiroz AC, Gagliardi JF, Forjaz CL, Rezk CC (2009) Clinic and ambulatory blood pressure responses after resistance exercise. J Strength Cond Res 23:571–578

    Article  PubMed  Google Scholar 

  • Quinn TJ (2000) Twenty-four hour, ambulatory blood pressure responses following acute exercise: impact of exercise intensity. J Hum Hypertens 14:547–553

    Article  PubMed  CAS  Google Scholar 

  • Raine NM, Cable NT, George KP, Campbell IG (2001) The influence of recovery posture on post-exercise hypotension in normotensive men. Med Sci Sports Exerc 33:404–412

    Article  PubMed  CAS  Google Scholar 

  • Rezk CC, Marrache RC, Tinucci T, Mion D Jr, Forjaz CL (2006) Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. Eur J Appl Physiol 98:105–112

    Article  PubMed  CAS  Google Scholar 

  • Savin WM, Davidson DM, Haskell WL (1982) Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol 53:1572–1575

    PubMed  CAS  Google Scholar 

  • Seiler S, Haugen O, Kuffel E (2007) Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc 39:1366–1373

    Article  PubMed  Google Scholar 

  • Senitko AN, Charkoudian N, Halliwill JR (2002) Influence of endurance exercise training status and gender on postexercise hypotension. J Appl Physiol 92:2368–2374

    Article  PubMed  Google Scholar 

  • Takahashi T, Okada A, Saitoh T, Hayano J, Miyamoto Y (2000) Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. Eur J Appl Physiol 81:233–239

    Article  PubMed  CAS  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  • Turner MJ, Tanaka H, Bassett DR Jr, Fitton TR (1996) The equilibrium CO2 rebreathing method does not affect resting or exercise blood pressure. Med Sci Sports Exerc 28:921–925

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the volunteers involved in this study. We also thank Alberto Porta for providing the softwares for spectral analysis. This study was supported by CAPES (Demanda Social) and CNPq.

Conflict of interest

The authors declare no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Lúcia de Moraes Forjaz.

Additional information

Communicated by Niels H. Secher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, L., Ritti-Dias, R.M., Tinucci, T. et al. Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol 111, 2069–2078 (2011). https://doi.org/10.1007/s00421-010-1811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1811-1

Keywords

Navigation