[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Integral functionals, normal integrands and measurable selections

  • Conference paper
  • First Online:
Nonlinear Operators and the Calculus of Variations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 543))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 20.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 27.00
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. T. Rockafellar, “Integrals which are convex functionals”, Pacific J. Math. 24 (1968), 525–539.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. T. Rockafellar, “Integrals which are convex functionals, II,” Pacific J. Math. 39 (1971), 439–469.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Castaing, “Sur les multi-applications mesurables”, thèse, Caën, 1967. This has partly been published in Rev. Franc. Info. Rech. Operationelle 1 (1967), 3–34.

    Google Scholar 

  4. K. Kuratowski and C. Ryll-Nardzewski, “A general theorem on selectors,” Bull. Polish Acad. Sci. 13 (1965), 397–411.

    MathSciNet  MATH  Google Scholar 

  5. V. A. Rokhlin, “Selected topics from the metric theory of dynamical systems”, Uspekhi Mat. Nauk 4 (1949), 57–128. See also Amer. Math. Soc. Translations 49 (1966), 171–240.

    MathSciNet  Google Scholar 

  6. R. T. Rockafellar, “Measurable dependence of convex sets and functions on parameters”, J. Math. Anal. Appl. 28 (1969), 4–25.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. F. Sainte-Beuve, “Sur la généralization d'un théorème de section mesurable de von Neumann-Aumann”, J. Math. Anal. Appl. 17 (1974), 112–129.

    MathSciNet  MATH  Google Scholar 

  8. R. T. Rockafellar, “Convex integral functionals and duality”, Contributions to Nonlinear Functional Analysis (E. Zarantonello, editor), Academic Press, 1971, 215–236.

    Google Scholar 

  9. G. Debreu, “Integration of correspondences”, Proc. Fifth Berkeley Symp. on Statistics and Prob., Vol. II, Part 1, (Univ. California Press, Berkeley, 1966), 351–372.

    Google Scholar 

  10. R. T. Rockafellar, “Weak compactness of level sets of integral functionals”, Troisième Colloque d'Analyse Fonctionelle (CBRM, Liège, 1970), H. G. Garnir (editor), 1971, 85–98.

    Google Scholar 

  11. M. Valadier, “Convex integrands on Suslin locally convex spaces” Travaux du Séminaire d'Analyse Convexe, Montpellier, 1973, Exposé no. 2.

    Google Scholar 

  12. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

    Google Scholar 

  13. I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationelles, Dunod, 1974.

    Google Scholar 

  14. H. Attouch, “Mesurabilité et monotonie”, thèse, Paris-Orsay, 1975.

    Google Scholar 

  15. R. T. Rockafellar, “Existence theorems for general control problems of Bolza and Lagrange”, Advances in Math. 15 (1975), 312–333.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. T. Rockafellar and R. Wets, “Nonanticipativity and L1-martingales in stochastic optimization problems”, Math. Programming Studies, 5 (1975).

    Google Scholar 

  17. I. V. Evstigneev, “Measurable selection and dynamic programming”, Math. of O.R. 1 (1976).

    Google Scholar 

  18. J. Lindenstrauss, “A short proof of Liapunov's convexity theorem”, J. Math. Mech. 15 (1966), 971–972.

    MathSciNet  MATH  Google Scholar 

  19. K. Yosida and E. Hewitt, “Finitely additive measures”, Trans. Amer. Math. Soc. 72 (1952), 46–66.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. L. Levin, “Lebesgue decomposition for functionals on the vector-function space L X ,” Funkt. Anal. +Appl. 8 (4) (1974), 48–53.

    Google Scholar 

  21. R. T. Rockafellar, “Level sets and continuity of conjugate convex functions”, Trans. Amer. Math. Soc. 123 (1966), 46–63.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. J. Moreau, “Sur la polaire d'une fonctionelle sémicontinue supérieurement”, C. R. Acad. Sci. Paris 258 (1964), 1128–1130.

    MathSciNet  MATH  Google Scholar 

  23. C. Castaing, “Quelques resultats de compacité liés a l'intégration”, C. R. Acad. Sci. Paris 270 (1970), 1732–1735.

    MathSciNet  MATH  Google Scholar 

  24. C. Castaing, “Intégrandes convexes duales”, Travaux du Séminaire d'Analyse Convexe, Montpellier, 1973, Exposé no. 6.

    Google Scholar 

  25. M. Valadier, “Contribution a l'analyse convexe”, Thèse, Paris, 1970.

    Google Scholar 

  26. H. Berliocchi and J. M. Lasry, “Intégrandes normales et mesures parametrées en calcul des variations”, Bull. Soc. Math. France, 1974.

    Google Scholar 

  27. P. Clauzure, “Quelques proprietés des espaces de Köthe gén ralisés”, Travaux du Séminaire d'Analyse Convexe, Montpellier, 1973, Exposé no. 4.

    Google Scholar 

  28. J. M. Bismut, “Intégrales convexes et probabilité”, J. Math. Anal. Appl. 43 (1973), 639–673.

    Article  MathSciNet  MATH  Google Scholar 

  29. Daniel H. Wagner, “Survey of measurable selection theorems”, manuscript of 80 pp. (author's address: Station Square 1, Paoli, Pennsylvania 19301, USA)

    Google Scholar 

  30. C. Delode, O. Arino and J. P. Penot, “Champs mesurables et multisections,” manuscript of 37 pp. (Penot's address: Département de Mathématiques, Boite Postale 523, 64010 Pau-Université, France)

    Google Scholar 

  31. V. L. Levin, “Convex integral functionals and the theory of liftings”, Uspekhi Mat. Nauk 31(2) (1975), 115–178. (For English translation, see Russian Math. Surveys (1975).)

    Google Scholar 

  32. R. T. Rockafellar, “Existence and duality theorems for convex problems of Bolza”, Trans. A.M.S. 159 (1971), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean Pierre Gossez Enrique José Lami Dozo Jean Mawhin Lucien Waelbroeck

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Rockafellar, R.T. (1976). Integral functionals, normal integrands and measurable selections. In: Gossez, J.P., Lami Dozo, E.J., Mawhin, J., Waelbroeck, L. (eds) Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, vol 543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0079944

Download citation

  • DOI: https://doi.org/10.1007/BFb0079944

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07867-8

  • Online ISBN: 978-3-540-38075-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics