Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
J. L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Springer 1961.
K. Yosida, Functional Analysis, Springer 1971 (Third Edition).
S. G. Krein, Linear differential equations in a Banach space, Izdat Nauka, Moscow 1967.
A. Friedman, Partial differential equations, Holt, Rinehart and Winston 1969.
R. W. Carroll, Abstract methods in partial differential equations, Harper and Row 1969.
A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Lecture Note 10, University of Maryland 1974.
T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208–234.
T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, Sec. I, Vol. 17 (1970), 241–258.
T. Kato, Linear evolution equations of "hyperbolic" type, II, J. Math. Soc. Japan 25 (1973), 648–666.
E. Hille and R. S. Phillips, Functional analysis and semi-groups, Revised Edition, Amer. Math. Soc. 1957.
T. Kato, Perturbation theory for linear operators, Springer 1966.
T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, to appear.
K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418.
P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, to appear.
A. E. Fischer and J. E. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic systems, I, Comm. Math. Phys. 28 (1972), 1–38.
A. Sjöberg, On the Korteweg-de Vries equations: existence and uniqueness, J. Math. Anal. Appl. 29 (1970), 569–579.
T. Mukasa and R. Iino, On the global solution for the simplest generalized Korteweg-de Vries equation, Math. Japonicae 14 (1969), 75–83.
Y. Kametaka, Korteweg-de Vries equation, Proc. Japan Acad. 45 (1969), 552–555; 556–558; 656–660; 661–665.
M. Tsutsumi and T. Mukasa, Parabolic regularizations for the generalized Korteweg-de Vries equation, Funkcial. Ekvac. 14 (1971), 89–110.
T. E. Dushane, Generalizations of the Korteweg-de Vries equation, Proc. Symp. Pure Math. Vol. 23, Amer. Math. Soc. 1973, pp. 303–307.
T. Kato, Nonstationary flows of viscous and ideal fluids in R3, J. Functional Anal. 9 (1972), 296–305.
K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc, 55 (1944), 132–151.
O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second English Edition, Gordon and Breach 1969.
K. K. Golovkin, Vanishing viscosity in Cauchy’s problem for hydromechanics equations, Trudy Mat. Inst. Steklov. 92 (1966), 31–49; English Translation 33–53.
F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal. 27 (1968), 329–348.
D. G. Ebin and J. Marsden, Groups of diffemorphisms and the motion of an incompressible fluid, Ann. Math. 92 (1970), 102–163.
H. Swann, The convergence with vanishing viscosity of non-stationary Navier-Stokes flow to ideal flow in R3, Trans. Amer. Math. Soc. 157 (1971), 373–397.
L. Gross, The Cauchy problem for the coupled Maxwell and Dirac equations, Comm. Pure Appl. Math. 19 (1966), 1–15.
J. M. Chadam, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J. Functional Anal. 13 (1973), 173–184.
R. Courant and D. Hilbert, Mathods of Mathematical Physics, Vol. II, Interscience Publishers 1962.
J. F. Nash, Le problèm de Cauchy pour les équations différentielles d’un fluide général, Bull. Soc. Math. France 90 (1962), 487–497.
D. E. Edmunds and L. A. Peletier, Quasilinear parabolic equations, Ann. Scuola Norm. Sup. Pisa 25 (1971), 397–421.
R. S. Palais, Fondations of global non-linear analysis, Benjamin 1968.
Editor information
Rights and permissions
Copyright information
© 1975 Springer-Verlag
About this paper
Cite this paper
Kato, T. (1975). Quasi-linear equations of evolution, with applications to partial differential equations. In: Everitt, W.N. (eds) Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol 448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0067080
Download citation
DOI: https://doi.org/10.1007/BFb0067080
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-07150-1
Online ISBN: 978-3-540-37444-2
eBook Packages: Springer Book Archive