[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Compactness of the Chow scheme: Applications to automorphisms and deformations of Kahler manifolds

  • Conference paper
  • First Online:
Fonctions de Plusieurs Variables Complexes III

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 670))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 20.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 27.00
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Akao, K., On prehomogeneous compact Kahler manifolds, in Manifolds-Tokyo, 1973, University of Tokyo Press (1975) 365–372.

    MATH  Google Scholar 

  2. Auslander, L., Green, L., and Hahn, F.; Flows on homogeneous spaces, Ann. Math. Studies No. 53, Princeton University Press. 1963, Page 157.

    Google Scholar 

  3. Barlet, D., Espace analytique reduit des cycles analytiques complexes compacts, in Fonctions de Plusiers variables complexes II, Springer Lecture Notes, Vol. 482 (1975) 1–158.

    Article  MathSciNet  MATH  Google Scholar 

  4. Barth, W. and Oeljeklaus, E., Uber die Albanesabbildung einer fast homogenen Kahler-Mannigfaltigkeit, Math Ann., 211 (1974) 47–62.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bishop, E., Conditions for the analyticity of certain sets, Mich. Math J., 11 (1964) 289–304.

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchard, A., Sur les varietes analytiques complexes, Ann. Ec. Norm. Sup. 73 (1956) 157–202.

    MathSciNet  MATH  Google Scholar 

  7. Borel, A. and Remmert, R., Uber kompakte homogene Kahlersche Manningfaltigkeiten, Math Ann. 145 (1961) 429–439.

    Article  MathSciNet  MATH  Google Scholar 

  8. Calabi, E., On Kahler manifolds with vanishing canonical class, in Algebraic Geometry and Topology, Lefschetz symposium, Princeton University Press, 1957, 78–89.

    Google Scholar 

  9. Carrell, J. and Lieberman, D., Holomorphic vector fields and Kahler manifolds, Invent. Math 21 (1973) 303–309.

    Article  MathSciNet  MATH  Google Scholar 

  10. Donin, I. F., Complete families of deformations of germs of complex spaces, Math. USSR Sbornik, 18 (1972) 397–406.

    Article  MathSciNet  MATH  Google Scholar 

  11. Douady, A., Le probleme des modules pour les sous-espaces analytiques d'un espace analytique donne, Ann Inst. Fourier (1966).

    Google Scholar 

  12. Grauert, H. and Fischer, W., Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Gottingen II (1965) 89–94.

    MathSciNet  MATH  Google Scholar 

  13. Hall, R., On algebraic varieties which possess finite continuous commutative groups of birational self-transformations, J. London Math Soc. 30 (1955) 507–511.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hironaka, H., Flattening theorems in complex analytic geometry, Amer. J. Math, 97 (1975) 503–547.

    Article  MathSciNet  MATH  Google Scholar 

  15. King, J., Currents defined by analytic varieties, Acta. Math 127 (1971) 185–219.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kobayashi, S., Transformation Groups in Differential Geometry, Ergebnisse Math. Band 70, Springer Verlag, 1972.

    Google Scholar 

  17. Kodaira, K., and Spencer, D., On deformations of complex analytic structures, I, II. Annals of Math, 67 (1958) 328–466.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lieberman, D., Holomorphic vector fields on projective varieties, in Proceedings of Symposia in Pure Math. Vol 30 (1976) 271–274.

    Google Scholar 

  19. Holomorphic vector fields and rationality, unpublished manuscript, 1973.

    Google Scholar 

  20. Lichnerowicz, A., Varietes kahleriennes et premiere classe de Chern, J. Diff. Geom. 1 (1967) 195–224.

    MathSciNet  MATH  Google Scholar 

  21. , Varietes kahleriennes a premiere classe de Chern nulle, C.R. Acad. Sci. 268 (1969) 876–880.

    MathSciNet  MATH  Google Scholar 

  22. Matsushima, Y., Holomorphic vector fields and the first Chern class of a Hodge manifold, J. Diff. Geom. 3 (1969) 477–480.

    MathSciNet  MATH  Google Scholar 

  23. Oeljeklaus, E., Fasthomogene Kahlermannigfaltigkeiten mit verschwindender erster Bettizahl, Manus. Math 7 (1972) 172–183.

    Article  MathSciNet  MATH  Google Scholar 

  24. Roth, R., Sur les varietes algebriques qui admettent des groupes continues d'automorphismes, 3eme Coll. Geom. Alg., Centre Belge de Recherche, Math., Gauthier Villars, (1960) 29–41.

    Google Scholar 

  25. Sommese, A., Holomorphic vector fields on Kahler manifolds, Math Ann. 210, (1974) 75–82.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sommese, A., Extension theorems for reductive group actions on Kahler manifolds, Math Ann. 218 (1975) 107–116.

    Article  MathSciNet  MATH  Google Scholar 

  27. Stoltzenberg, G., Volumes, limits, and continuity, Springer Math Lecture Notes 19 (1966).

    Google Scholar 

  28. Carrell, J., Holomorphically injective complex toral actions, Proc. Conf. on compact transformation groups, Springer Lecture Notes 299, 205–236.

    Google Scholar 

Download references

Authors

Editor information

François Norguet

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this paper

Cite this paper

Lieberman, D.I. (1978). Compactness of the Chow scheme: Applications to automorphisms and deformations of Kahler manifolds. In: Norguet, F. (eds) Fonctions de Plusieurs Variables Complexes III. Lecture Notes in Mathematics, vol 670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0064399

Download citation

  • DOI: https://doi.org/10.1007/BFb0064399

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08927-8

  • Online ISBN: 978-3-540-35745-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics