Abstract
An innovative attempt to develop formal techniques in geometric modeling is reported through the axiomatization of the combinatorial maps in the Calculus of Inductive Constructions. A hierarchical specification of ordered sorts is presented and validated by inductive proofs of consistency and completeness in the Coq prover. Classical difficulties in theorem proving like cohabitation of objects with their generalization, smooth handling of subtyping, completion of partial relations or objects, observationality v. constructivism, and symmetry of relations, are addressed. Geometrical modeling issues are thus solved in a new and unquestionable fashion, giving a great insight on the domain and a deep understanding of the model, and so validating the methodology.
This work is supported by the GDR-PRC of Programmation, and the GDR-PRC of Algorithmique, Modèles et Infographie (MENRT, CNRS, France).
Preview
Unable to display preview. Download preview PDF.
References
R. Aharoni, G. Herman, and M. Loebl. Jordan Graphs. Graphical Models and Image Processing, 58(4):345–359, July 1996.
C. Berge. Graphes et Hypergraphes. Dunod, Paris (France), 1973.
G. Bernot, M. Bidoit, and T. Knapik. Behavioural Approaches to Algebraic Specifications: a Comparative Study. Acta Informatica 31(7):651–671, 1994.
Y. Bertrand and J.-F. Dufourd. Algebraic Specification of a 3D-Modeler Based on Hypermaps. Graphical Models and Image Processing, 56(1):29–60, 1994.
Y. Bertrand, J.-F. Dufourd, J. FranÇon, and P. Lienhardt. Algebraic Specification and Development in Geometric Modeling. In TAPSOFT, pages 74–87, Orsay (France), 1993. Springer-Verlag, LNCS 668.
T. Coquand and G. Huet. Constructions: a Higher Order Proof System for Mechanizing Mathematics. In EUROCAL, Linz, 1985. LNCS 203.
R. Cori. Un Code pour les Graphes Planaires et ses Applications. Société Math. de France, Paris, Astérisque 27, 1975.
C. Cornes et al. The Coq Proof Assistant Reference Manual V6.1. INRIA-Rocquencourt, CNRS-ENS Lyon (France), December 1996.
J.-F. Dufourd. Algebras and Formal Specifications in Geometric Modeling. In The Visual Computer, pages 131–154. Spinger-Verlag, 1997.
J.-F. Dufourd and F. Puitg. Boundary Representation Specification Revisited with a New Quasi-map Concept. Submitted to Graphical Models and Image Processing, 1998.
J. FranÇon. Topologie Combinatoire en Imagerie. Research report 95/12, Université L. Pasteur, LSIIT, Strasbourg (France), 1995.
H. Griffiths. Surfaces. Cambridge University Press, 1981.
A. Jacques. Sur le Genre d'une Paire de Substitutions. Notes des membres et correspondants, volume 267, pages 625–627, 1968.
A. Jacques. Constellations et Graphes Topologiques. In Combinatorial Theory and Applications, pages 657–673. Budapest (Hungary), 1970.
P. Lienhardt. Topological Models for Boundary Representation: A Survey. In Computer Aided Design, volume 23(1), pages 59–81. 1991.
C. Parent. Synthesizing Proofs from Programs in the Calculus of Inductive Constructions. In Mathematics of Program Construction. LNCS 947, 1995.
C. Paulin-Mohring. Inductive Definitions in the System Coq — Rules and Properties. In Typed Lambda-calculi and Applications. LNCS 664, 1993.
J.-P. Petit. Le Topologicon. Belin, 1985.
F. Puitg and J.-F. Dufourd. Spécifications en Modélisation Géométrique par la Théorie des Constructions. In Proc. Preuves et Spécifications Algébriques, Grenoble (France), 1995. Journées du GDR de Programmation du CNRS.
F. Puitg and J.-F. Dufourd. Combinatorial Maps and Planarity: Formal Specifications and Proofs in the Calculus of Inductive Constructions. Tech. Rep. 98/05 (100 pages), LSIIT, Strasbourg (France). etsehttp://dpt-info.u-strasbg.fr/~puitg/rr98/main.htmletse, 1998.
J. Rouyer. Développements d'Algorithmes dans le Calcul des Constructions. PhD thesis, Institut National Polytechnique de Lorraine, Nancy (France), March 1994.
W. Tutte. Combinatorial Oriented Maps. In Canadian Journal of Mathematics, volume XXXI(2), pages 986–1004. 1979.
M. Wirsing. Algebraic Specification. In Formal Models and Semantics, chapter 13, pages 675–788. Elsevier, North-Holland, Amsterdam, 1990.
M. Yamamoto et al. Formalization of Planar Graphs. In HOL Theorem Proving and Its Applications, p 369, Aspen Grove (USA), 1995. Springer-Verlag, LNCS 971.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Puitg, F., Dufourd, J.F. (1998). Formal specification and theorem proving breakthroughs in geometric modeling. In: Grundy, J., Newey, M. (eds) Theorem Proving in Higher Order Logics. TPHOLs 1998. Lecture Notes in Computer Science, vol 1479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055149
Download citation
DOI: https://doi.org/10.1007/BFb0055149
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64987-8
Online ISBN: 978-3-540-49801-8
eBook Packages: Springer Book Archive