[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simulation as a correct transformation of rewrite systems

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1997 (MFCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1295))

Abstract

Kamperman and Walters proposed the notion of a simulation of one rewrite system by another one, whereby each term of the simulating rewrite system is related to a term in the original rewrite system. In this paper it is shown that if such a simulation is sound and complete and preserves termination, then the transformation of the original into the simulating rewrite system constitutes a correct step in the compilation of the original rewrite system. That is, the normal forms of a term in the original rewrite system can then be obtained by computing the normal forms of a related term in the simulating rewrite system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Bergstra, J. Heering, and P. Klint, eds. Algebraic Specification. ACM Press in cooperation with Addison Wesley, 1989.

    Google Scholar 

  2. R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In Machine Intelligence, Volume 4, pp. 17–43. Edinburgh University Press, 1969.

    Google Scholar 

  3. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Volume B, pp. 243–320. Elsevier, 1990.

    Google Scholar 

  4. H. Ehrig, H.-J. Kreowski, and P. Padawitz. Stepwise specification and implementation of abstract data types. In Proceedings ICALP'78, LNCS 62, pp. 205–226. Springer, 1978.

    Google Scholar 

  5. W.J. Fokkink and J.C. van de Pol. Correct transformation of rewrite systems for implementation purposes. Logic Group Preprint Series 164, Utrecht University, 1996. Available at http://www.phil.ruu.nl.

    Google Scholar 

  6. J.F.Th. Kamperman. Compilation of Term Rewriting Systems. PhD thesis, University of Amsterdam, 1996.

    Google Scholar 

  7. J.F.Th. Kamperman and H.R. Walters. Minimal term rewriting systems. In Proceedings WADT'95, LNCS 1130, pp. 274–290. Springer, 1996.

    Google Scholar 

  8. J.F.Th. Kamperman and H.R. Walters. Simulating TRSs by minimal TRSs: a simple, efficient, and correct compilation technique. Report CS-119605, CWI, 1996. Available at http://www.cwi.nl/epic.

    Google Scholar 

  9. J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, Volume I, pp. 1–116. Oxford University Press, 1992.

    Google Scholar 

  10. A. Laville.Lazy pattern matching in the ML language. In Proceedings FSTTCS'87, LNCS 287, pp. 400–419. Springer, 1987.

    Google Scholar 

  11. B. Luttik. Transformation of reduction systems: a view on proving correctness. Master's Thesis, University of Amsterdam, 1996.

    Google Scholar 

  12. J. McCarthy. Towards a mathematical science of computation. In Proceedings Information Processing '62, pp. 21–28. North-Holland, 1963.

    Google Scholar 

  13. F.L. Morris. Advice on structuring compilers and proving them correct. In Proceedings POPL'73, pp. 144–152. ACM Press, 1973.

    Google Scholar 

  14. C.F. Nourani. Abstract implementations and their correctness proofs. Journal of the ACM, 30:343–359, 1983.

    Article  Google Scholar 

  15. M.J. O'Donnell. Equational Logic as a Programming Language. MIT Press, 1985.

    Google Scholar 

  16. R.C. Sekar, S. Pawagi, and I.V. Ramakrishnan. Transforming strongly sequential rewrite systems with constructors for efficient parallel execution. In Proceedings RTA'89, LNCS 355, pp. 404–418. Springer, 1989.

    Google Scholar 

  17. S.R. Thatte. On the correspondence between two classes of reduction systems. Information Processing Letters, 20(2):83–85, 1985.

    Article  Google Scholar 

  18. S.R. Thatte. Implementing first-order rewriting with constructor systems. Theoretical Computer Science, 61(1):83–92, 1988.

    Article  Google Scholar 

  19. R.M. Verma. Transformations and confluence for rewrite systems. Theoretical Computer Science, 152(2):269–283, 1995.

    Article  Google Scholar 

  20. H.R. Walters and J.F.Th. Kamperman. EPIC: an equational language — abstrac machine and supporting tools. In Proceedings RTA'96, LNCS 1103, pp. 424–427. Springer, 1996.

    Google Scholar 

  21. H.R. Walters and J.F.Th. Kamperman. EPIC 1.0 (unconditional), an equational programming language. Report CS-119604, CWI, 1996. Available at http://www.cwi.nl/epic.

    Google Scholar 

  22. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae, 24(1,2):89–105, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Peter Ružička

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fokkink, W., van de Pol, J. (1997). Simulation as a correct transformation of rewrite systems. In: Prívara, I., Ružička, P. (eds) Mathematical Foundations of Computer Science 1997. MFCS 1997. Lecture Notes in Computer Science, vol 1295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029968

Download citation

  • DOI: https://doi.org/10.1007/BFb0029968

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63437-9

  • Online ISBN: 978-3-540-69547-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics