Abstract
LetC be a convex body ofE d and consider the symmetric difference metric. The distance ofC to its best approximating polytope having at mostn vertices is 0 (1/n 2/(d−1)) asn→∞. It is shown that this estimate cannot be improved for anyC of differentiability class two. These results complement analogous theorems for the Hausdorff metric. It is also shown that for both metrics the approximation properties of «most» convex bodies are rather irregular and that ford=2 «most» convex bodies have unique best approximating polygons with respect to both metrics.
Similar content being viewed by others
References
Betke U.—Wills J. M.,Diophantine approximation of convex bodies, Manuscript (1979).
Blaschke W.,Kreis und Kugel, Leipzig: Göschen 1916, New York: Chelsea 1949, Berlin: de Gruyter 1956.
Bronstein E. M.,ε-entropy of convex sets ad functions, Sibir Mat. Z.,17 (1976), 508–514 = Siber. Math. J.,17 (1977) 393–398.
Bronstein E. M.—Ivanov L. D.,The approximation of convex sets by polyedra, Sibir. Mat. Z.,16 (1975), 1110–1112 = Siber. Math. J.,16 (1976), 852–853.
Carlsson S.—Grenander U.,Statistical approximation of plane convex sets, Skand. Aktuar. Tidskr.3/4 (1967), 113–127.
Dinghas A.,Über das Verhalten der Entfernung zweier Punktmengen bei gleichzeitiger Symmetrierung derselben, Arch. Math.,8 (1957), 46–51.
Dudley R.,Metric entropy of some classes of sets with differentiable boundaries, J. Appr. Th.,10 (1974), 227–236. Corrigendum ibid.,26 (1979), 192–193.
Eggleston H G.,Problems in Euclidean space, London: Pergamon Press 1957.
Eisenhart L. P.,Riemannian Geometry, Princeton: Princeton University Press 1949.
Fejes Tóth L.,Lagerungen in der Ebene, auf der Kugel und im Raum, Berlin-Göttigen-Heidelberg: Springer 1953, 1972.
Gruber P. M.,Approximation of convex bodies by polytopes, C. R. Acad. Bulg. Sci.,34 (1981), 621–622.
Hadwiger H.,Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Berlin-Göttingen-Heidelberg: Springer 1957.
Holmes R. B.,Geometric functional analysis and its applications, New York-Heidelberg-Berlin: Springer 1975.
Ivanov R. P.,Approximation of convex n-polygons by means of inscribed (n−1)-polygons. (Bulgar., Engl. Summary)., In: Proc. Conf. Bulgar. Math. Soc., Vidin, 1973, 113–122. Sofia: Bulgar. Akad. Nauk. 1974.
Johnson H. H.—Vogt A.,A geometric method for approximating convex arcs, SIAM J. Appl. Math.,38 (1980), 317–325.
Kenderov P.,Approximation of plane convex compacta by polygons.
Koutroufiotis D.,On Blaschke's rolling theorem, Arch. Math.,23 (1972), 655–660.
Macbeath A. M.,An extremal property of the hypersphere, Proc. Cambridge Philos. Soc.,47 (1951), 245–247.
McClure D E.—Vitale R A.,Polygonal approximation of plane convex bodies, J. Math. Anal. Appl.,51 (1975), 326–335.
McMullen P.—Shephard G C.,Convex polytopes and the upper bound conjecture, Cambridge: Gambridge University Press 1971.
Pogorelov A. V.,Extrinsic, geometry of convex surfaces, Moscow: Izdatel' stvo «Nauka» 1969 and Jerusalem: AMS 1973.
Popov V. A.,Approximation of convex sets (Bulgar., Engl. Summary). Bull. Inst. Math. Bulgar. Acad. Sci.,11 (1970), 67–69.
Rogers C. A.,Hausdorff measures, Cambridge: Cambridge University Press 1970.
Santalò L. A.,Integral geometry and geometric probability, London: Addison.-Wesley 1976.
Schneider R.,Zur optimalen Approximation konvexer Hyperflächen durch Polyeder. Math. Annalen,256 (1981), 289–301.
Shephard R.—Wieacker J. A.,Approximation of convex bodies by polytopes. Bull. London Math. Soc.,13 (1981), 149–156.
Shephard G. C.—Webster R. J.,Metrics for sets of convex bodies, Mathematika,12 (1965), 73–88.
Valentine F. A.,Convex sets, New York: Mc. Graw-Hill 1964 and Mannheim: Bibl. Inst. 1968.
Wieacker J. A.,Einige Probleme der polyedrischen Approximation, Diplomarbeit: Univ. Freiburg 1978.
Wills J. M.,Symmetrisierung an Unterräumen., Arch. Math.,20 (1969), 169–172.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gruber, P.M., Kenderov, P. Approximation of convex bodies by polytopes. Rend. Circ. Mat. Palermo 31, 195–225 (1982). https://doi.org/10.1007/BF02844354
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02844354