Abstract
The expression of Na,K-ATPase α1- and α3-mRNAs was analyzed byin situ hybridization in the superior frontal cortex and cerebellum of brains from five Alzheimer's disease (AD), five nondemented age-matched, and three young control subjects. Brains with well-preserved RNA, tested by Northern hybridization of immobilized RNA with [32P]-labeled human β-actin riboprobe, were chosen for analysis.In situ hybridization was performed on formalin-fixed, 5 μm-thick Paraplast sections with [35S]-labeled riboprobes prepared by in vitro transcription of the respective linearized clones: a 537-bpEcoRI-PstI fragment of α1-cDNA and a 342-bpPstI-EcoRI fragment of α3-cDNA. In cortex, grains related to mRNA were measured by density per unit area in five cortical columns separated by 1.0–1.2 cm in each of two adjacent sections. Each cortical column of 180-μm width was divided into four depths orthogonal to the pial surface between the pia and the white matter. Amyloid plaques were counted in the same regions of adjacent sections. In addition, α3-mRNA grain clusters over individual pyramidal neurons within depth 4 were analyzed. We found the following significant changes (p<0.05):
-
1.
Increases in total α1-mRNA by 13–19% in AD compared to young and by 7–12% in AD compared to age-matched controls.
-
2.
Decrease in total α3-mRNA by 31–38% in AD compared to young and age-matched controls.
-
3.
Decrease in α3-mRNA content over individual pyramidal perikarya by 14% in normal aged brains without plaques compared to young controls, and by 44% in AD relative to young controls and by 35% compared to age-matched controls.
No significant difference (p<0.2) was found with respect to α1- or α3-mRNA in cerebellar cortex or individual Purkinje cells among any of the groups. In addition, there was a trend toward an inverse correlation between the levels of α3-mRNA and of diffuse plaques, but not of neuritic plaques, in AD cases. In conclusion:
-
1.
The increases in α1-mRNA in AD may be related to an increased reactive gliosis.
-
2.
The declines in α3-mRNA per individual neuron found in normal aging occur prior to the formation of diffuse plaques and are greatly accelerated in AD.
-
3.
The declines in α3-mRNA per neuron found in normal aging may predispose to or potentiate AD pathogenesis.
Similar content being viewed by others
References
Albers R. W., Koval G. J., and Siegel G. J. (1968) Studies on the interaction of ouabain and other cardioactive steroids with sodium- and potassium-activated adenosinetriphosphatase.Mol. Pharmacol. 4, 324–336.
Albers R. W., Siegel G. J., and Stahl W. L. (1994) Membrane transport, inBasic Neurochemistry, 5th ed. (Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B., eds.), Raven, New York, pp. 49–74.
Barton A. J., Crook B. W., Karran E. H., Brown F., Dewar D., Mann D. M., et al. (1996) Alteration in brain presenilin 1 mRNA expression in early onset familial Alzheimer's disease.Neurodegeneration 5(3), 213–218.
Blanco G., Sanchez G., and Mercer R. W. (1995) Comparison of the enzymatic properties of the Na,K-ATPase alpha 3 beta 1 and alpha 3 beta 2 isozymes.Biochemistry 34(31), 9897–9903.
Brines M. L. and Robbins R. J. (1992) Inhibition of α2/α3 sodium pump isoform potentiates glutamate neurotoxicity.Brain Res. 591, 94–102.
Cameron R., Klein L., Shyjan A. W., Rakic P., and Levenson R. (1994) Neurons and astroglia express distinct subsets of Na,K-ATPase α- and α-subunits.Brain Res. Mol. Brain Res. 21, 333–343.
Chauhan N. B. and Siegel G. J. (1996) In situ analysis of Na,K-ATPase α1- and α3-isoform mRNAs in aging rat hippocampus.J. Neurochem. 66(4), 1742–1751.
Chauhan N. B. and Siegel G. J. (1997a) Differential expression of Na,K-ATPase α-isoform mRNAs in aging rat cerebellum.J. Neurosci. Res. 47(3), 287–299.
Chauhan N. B. and Siegel G. J. (1997b) Na,K-ATPase: Increases in α1-messenger RNA and decreases in α3-messenger RNA levels in aging rat cerebral cortex.Neuroscience 78(1), 7–11.
Citron M., Westway D., Xia W. M., Carlson G., Diehl T., Levesque G., et al. (1997) Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta protein in both transfected cells and transgenic mice.Nature Med. 3(1), 67–72.
Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskel P. C., Small G. W., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.Science 261, 921–923.
Cummings B. J., Satou T., Head E., Milgram N. W., Cole G. M., Savage M. J., et al. (1996) Diffuse plaques contain C-terminal A-beta(42) and not A-beta(40). Evidence from cats and dogs.Neurobiol. Aging 17(4), 653–659.
Finch C. E. (1990)Longevity, Senescence and the Genome. The University of Chicago Press, Chicago, pp. 359–427.
Finch C. E. and Morgan D. G. (1990) RNA and protein metabolism in the aging brain.Ann. Rev. Neurosci. 13, 75–88.
Hardy J. (1997) Amyloid, the presenilins and Alzheimer's disease.Trend Neurosci. 20, 154–159.
Harik S. I., Mitchell M. J., and Kalaria R. N. (1989) Ouabain binding in the human brain. Effects of Alzheimer's disease on aging.Arch Neurol. 46(9), 951–954.
Herrera V. L., Cova T., Sasson D., and Ruiz-Opazo N. (1994) Developmental cell-specific regulation of Na,K-ATPase α1-, α2- and α3-isoform gene expression.Am. J. Physiol. 266(35), C1301-C1312.
Hieber V., Siegel G. J., Fink D. J., Beaty M. V., and Mata M. (1991) Differential distribution of Na,K-ATPase alpha isoform mRNAs in the central nervous system.Cell Mol. Neurobiol. 11, 253–262.
Hitschke K., Buhler R., Apell H.-J., and Stark G. (1994) Inactivation of Na,K-ATPase by radiation-induced free radicals: evidence for a radical-chain mechanism.FEBS Lett. 353, 297–300.
Iacopino A. M. and Christakos S. (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases.Proc. Natl. Acad. Sci. USA 87(11), 4078–4082.
Johnston J. A., Froelich S., Lannfelt L., and Cowburn R. F. (1996) Quantification of presenilin-1 mRNA in Alzheimer's disease.FEBS Lett. 394(3), 279–284.
Juhaszova M. and Blaustein M. P. (1997) Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells.Proc. Natl. Acad. Sci. USA 94(5), 1800–1805.
Lichtstein D. (1995) Na,K-ATPase and hear excitability.Adv. Exp. Med. Biol. 382, 23–30.
Liguri G., Taddei N., Nassi P., Latorracs S., Nediani C., and Sorbi S. (1990) Changes in Na,K-ATPase, Ca-ATPase and some soluble enzymes related to energy metabolism in brains of patients with Alzheimer's disease.Neurosci. Lett. 112(2–3), 338–342.
Lingrel J. B. and Kuntzweiler T. (1994) Na,K-ATPase.J. Biol. Chem. 269, 19,659–19,662.
Lingrel J. B., Orlowski J., Shull M. M., and Price E. M. (1990) Molecular genetics of Na,K-ATPase.Prog. Nucleic Acid Res. Mol. Biol. 38, 37–89.
Lou Y., Sunderland T., and Wolozin B. (1996) Physiologic levels of β-amyloid activate phosphatidylinositol 3-kinase with the involvement of tyrosine phosphorylation.J. Neurochem. 67, 978–987.
Mann D. M. A. and Iwatsubo T. (1996) Diffuse plaques in the cerebellum and corpus striatum in Downs Syndrome contain amyloid beta protein (A-beta) only in the form of A-beta (42–43).Neurodegeneration 5(2), 115–120.
Mann D. M. A., Iwatsubo T., Ihara Y., Cairns N. J., Lantos P. L., Bogdanovic N., et al. (1996) Predominant deposition of amyloid-beta (42–43) in plaques in cases of Alzheimer's disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene.Am. J. Pathol. 148(4), 1257–1266.
Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities: Evidence for a role in loss of Ca++ homeostasis and cell death.J. Neurosci. 15(9), 6239–6249.
Mata M., Siegel G. J., Hieber V., Beaty M. W., and Fink D. J. (1991) Differential distribution of (Na,K)-ATPase α-isoform mRNAs in the peripheral nervous system.Brain Res. 546, 47–54.
Mata M., Hieber V., Beaty M., Clevenger M., and Fink D. (1992) Activity-dependent regulation of Na,K-ATPase α isoform mRNA expression in vivo.J. Neurochem. 59, 622–626.
Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excito-toxicity.J. Neurosci. 12, 379–389.
Mirra S. S., Heyman A., and McKeel D. (1991) Consortium to establish a registry for alzheimer's disease (CERAD).Neurology 41, 479–486.
Mochizuki A., Peterson J. W., Mufson E. J., and Trapp B. D. (1996) Amyloid load and neural elements in Alzheimer's disease and non-demented individuals with high amyloid density.Exp. Neurol. 142, 89–102.
Munzer J. S., Daly S. E., Jewell-Motz E. A., Lingrel J. B., and Blostein R. (1994) Tissue- and isoform-specific kinetic behaviors of the Na,K-ATPase.J. Biol. Chem. 269, 16,668–16,676.
Nichols N. R., Day J. R., Laping N. J., Johnson S. A., and Finch C. E. (1993) GFAP mRNA increases with age in rat and human brain.Neurobiol. Aging 14(5), 421–429.
Orlowski J. and Lingrel J. B. (1988) Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic α-isoform and α-subunit mRNAs.J. Biol. Chem. 263, 10,436–10,442.
Oyama F., Shimada H., Oyama R., Titani K., and Ihara Y. (1993) Beta-amyloid protein precursor and tau mRNA levels versus beta-amyloid plaque and neurofibrillary tangles in the aged human brain.J. Neurochem. 60(5), 1658–1664.
Oyama F., Cairns N. J., Shimada H., Oyama R., Titani K., and Ihara Y. (1994) Down's syndrome: upregulation of beta-amyloid protein precursor and tau mRNAs and their defective coordination.J. Neurochem. 62(3), 1062–1066.
Pathak B. G., Neuman J. C., Croyle M. L., and Lingrel J. B. (1994) The presence of both negative and positive elements in the 5′-flanking sequence of the rat Na,K-ATPase alpha 3 subunit gene are required for brain expression in transgenic mice.Nucleic Acid Res. 22, 4748–4755.
Peng L., Martin-Vasallo P., and Sweadner K. J. (1997) Isoforms of Na,K-ATPase α and β subunits in the rat cerebellum and in granule cell culture.J. Neurosci. 17(10), 3488–3502.
Savage M. J., Kawooya J. K., Pinsker L. R., Emmons T. L., Mistretta S., Siman R., et al. (1995) Elevated A-beta levels in Alzheimer's disease brain are associated with selective accumulation of A-beta (42) in parenchymal amyloid plaques and both A-beta (40) and A-beta (42) in cerebrovascular deposits.Amyloid Int. J. Exp. Clin. Invest. 2(4), 234–240.
Schechter R., Yen S. H., and Terry R. D. (1981) Fibrous astrocytes in senile dementia of the Alzheimer's type.J. Neuropathol Exp. Neurol. 40(2), 95–101.
Schmidt M. L., Lee V. M.-Y., Forman M., Chiu T. S., and Trojanowski J. Q. (1997) Monoclonal antibodies to a 100-Kd protein reveal abundant Aβ-negative plaques throughout gray matter of Alzheimer's disease brains.Am. J. Pathol. 151, 69–80.
Schubert D., Behl C., Lesley R., Brack A., Dargusch R., Sagara Y., et al. (1995) Amyloid peptides are toxic via a common oxidative metabolism.Proc. Natl. Acad. Sci. USA 92, 1989–1993.
Selkoe D. J. (1994) Normal and abnormal biology of the β-amyloid precursor protein.Ann. Rev. Neurosci. 17, 489–517.
Sheng J. G., Mrak R. E., Rovnaghi C. R., Kozlowska E., Van Eldik L. J., and Griffin W. S. (1996) Human brain S 100 beta and S 100 beta mRNA expression increases with age: pathogenic implications for Alzheimer's disease.Neurobiol. Aging 17(3), 359–363.
Skou J. C. and Esmann M. (1992) The Na,K-ATPase.J. Bioenerg. Biomembr. 24, 249–261.
Sweadner K. J. (1995) Na,K-ATPase and its isoforms, inNeuroglia (Kettenmann H. and Ransom B. R., eds.), Oxford University Press, New York, pp. 259–272.
Takami K., Terai K., Matsuo A., Walker D. G., and McGeer P. L. (1997) Expression of presenilin-1 and-2 mRNAs in rat and Alzheimer's disease brains.Brain Res. 748(1–2), 122–130.
Tanaka S., Nakamura S., Kimura J., and Ueda K. (1993) Age-related change in the proportion of amyloid precursor protein mRNAs in the gray matter of cerebral cortex.Neurosci. Lett. 163(1), 19–21.
Tekirian T. L., Cole G. M., Russel M. J., Yang F. S., Wekstein D. R., Patel E., et al. (1996) Carboxy terminal of beta-amyloid deposits in aged human, canine, and polar bear brains.Neurobiol. Aging 17(2), 249–257.
Therien A. G., Nestor N. B., Ball W. J., and Blostein R. (1996) Tissue-specific versus isoform-specific differences in cation activation kinetics of the Na,K-ATPase.J. Biol. Chem. 271(12), 7104–7112.
Watts A. G., Sanchez-Watts G., Emanual J. R., and Levenson R. (1991) Cell-specific expression of mRNAs encoding Na+,K(+)-ATPase alpha- and beta-subunit isoforms within the rat central nervous system.Proc. Natl. Acad. Sci. USA 88(16), 7425–7429.
Yamada T., Kondo A., Takamatsu J., Tateishi J., and Goto I. (1995) Apolipoprotein E mRNA in the brains of patients with Alzheimer's disease.J. Neurol. Sci. 129(1), 56–61.
Zhao N., Lo L. C., Berova N., Nakanishi K., Tymiak A. A., Ludens J. H., et al. (1995) Na,K-ATPase inhibitors from bovine hypothalamus and human plasma are different from ouabain: nanogram scale CD structural analysis.Biochemistry 34(31), 9893–9896.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chauhan, N.B., Lee, J.M. & Siegel, G.J. Na,K-ATPase mRNA levels and plaque load in Alzheimer's disease. J Mol Neurosci 9, 151–166 (1997). https://doi.org/10.1007/BF02800498
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02800498