[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Seed size in relation to phylogeny, growth form and longevity in a subalpine meadow on the east of the Tibetan plateau

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study examined seed size distribution, and seed size in relation to phylogeny, growth form and longevity, where seed size is expected to be approximately of a log-normal frequency distribution and correlate dwith phylogeny, growth form and longevity. We made use of a data set of 229 species from alpine meadow on the east of the Tibetan plateau. Species spanned 104 range of seed size, and the frequency of seed mass classes on a logarithmic scale produced an approximately normal distribution, but largely shifted towards smaller-sized seeds compared to those of the temperate zone and the tropics. It was evident that seed size was strongly related to phylogeny, where order, family, genus and species accounted for 2%, 32.9%, 48.9% and 16.2% of total variation in log seed mass. However, both growth form and longevity did not account for variation in log seed mass, which was opposite to the previously reported patterns of trait correlation. The implications of our results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerly D.D. &Reich P. (1999): Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts.Amer. J. Bot. 86: 1272–1281.

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (1998): An ordinal classification for the families of flowering plants.Ann. Missouri Bot. Gard. 85: 531–553.

    Article  Google Scholar 

  • Augspurger C.K. (1984): Light requirements of neotropical tree seedlings: a comparative study of growth and survival.J. Ecol. 72: 777–795.

    Article  Google Scholar 

  • Baker H.G. (1972): Seed weight in relation to environmental conditions in California.Ecology 53: 997–1010.

    Article  Google Scholar 

  • Bondeau A., Kicklighter D.W. &Kaduk J. (1999): Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates.Global Change Biol. 5: 35–45.

    Article  Google Scholar 

  • Editorial Committee of Chinese Plant Records (1998):Chinese plant records. Science Press, Beijing.

    Google Scholar 

  • Foster S.A. &Janson C.H. (1985): The relationship between seed size and establishment conditions in tropical woody plants.Ecology 66: 773–780.

    Article  Google Scholar 

  • Foster S.A. (1986): On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis.Bot. Rev. 52: 260–299.

    Article  Google Scholar 

  • Geritz S.A.H. (1998): Co-evolution of seed size and seed predation.Evol. Ecol. 12: 891–911.

    Article  Google Scholar 

  • Geritz S.A.H., Meijden E.V.D. &Metz A.J. (1999): Evolutionary dynamics of seed size and seedling competitive ability.Theor. Populat. Biol. 55: 324–343.

    Article  CAS  Google Scholar 

  • Harper J.L., Lovell P.H. &Moore K.G. (1970): The shapes and sizes of seeds.Annual Rev. Ecol. Syst. 1: 327–356.

    Article  Google Scholar 

  • Harvey P.H. &Mace G.M. (1982): Comparisons between taxa and adaptive trends. In:King’s College Sociobiology Group (eds.),Current problems in sociobiology, Cambridge University Press, Cambridge, pp. 343–361.

    Google Scholar 

  • Harvey P.H. &Pagel M. (1991):The comparative method in evolutionary biology. Oxford University Press, Oxford.

    Google Scholar 

  • Harvey P.H., Read A.F. &Nee S. (1995): Why ecologist need to be phylogenetically challenged.J. Ecol. 83: 535–536.

    Article  Google Scholar 

  • Herrera C.M. (1992): Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants.Amer. Naturalist 140: 421–446.

    Article  Google Scholar 

  • Hodgson J.G. &Mackey J.M.L. (1986): The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size.New Phytol. 104: 497–515.

    Article  Google Scholar 

  • Hughes L., Dunlop M., French K., Leishman M., Rice B., Rodgerson L. &Westoby M. (1994): Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes.J. Ecol. 82: 933–950.

    Article  Google Scholar 

  • Jurado E., Westoby M. &Nelson D. (1991): Diaspore weight, dispersal, growth form and perenniality of Central Australian plants.J. Ecol. 79: 811–830.

    Article  Google Scholar 

  • Keeley J.E. (1991): Seed germination and life history syndromes in the California chaparral.Bot. Rev. 57: 81–116.

    Google Scholar 

  • Kelly C.K. (1995): Seed size in tropical trees: a comparative study of factors affecting seed size in Peruvian angiosperms.Oecologia 102: 377–388.

    Article  Google Scholar 

  • Kelly C.K. (1996): Seed mass, habitat conditions and taxonomic relatedness: a re-analysis of Salisbury (1974).New Phytol. 135: 169–174.

    Article  Google Scholar 

  • Kisdi É. &Geritz S.A.H. (2001): Evolutionary disarmament in interspecific competition.Proc. Roy. Soc. London B 268: 2589–2594.

    Article  CAS  Google Scholar 

  • Leishman M.R. &Westoby M. (1994): Hypotheses on seed size: tests using the semiarid flora of western New South Wales, Australia.Amer. Naturalist 143: 890–906.

    Article  Google Scholar 

  • Leishman M.R., Westoby M. &Jurado E. (1995): Correlates of seed size variation: a comparison among five temperate floras.J. Ecol. 83: 517–530.

    Article  Google Scholar 

  • Lord J., Egan J., Clifford T., Jurado E., Leishman M., Williams D. &Westoby M. (1997): Larger seeds in tropical floras: consistent patterns independent of growth form and dispersal mode.J. Biogeogr. 24: 205–211.

    Article  Google Scholar 

  • Lord J., Westoby M. &Leishman M.R. (1995): Seed size and phylogeny in six temperate floras: conservatism, and adaptation.Amer. Naturalist 146: 349–364.

    Article  Google Scholar 

  • Mazer S.J. (1989): Ecological, taxonomic and life history correlates of seed mass among Indiana dune angiosperms.Ecol. Monogr. 59: 153–175.

    Article  Google Scholar 

  • Mazer S.J. (1990): Seed mass of Indiana Dune genera and families: taxonomic and ecological correlates.Evol. Ecol. 4: 325–357.

    Article  Google Scholar 

  • McKitrick M.C. (1993): Phylogenetic constraint in evolutionary theory: has it any explanatory power?Annual Rev. Ecol. Syst. 24: 307–330.

    Article  Google Scholar 

  • Onipchenko V.G., Semenova G.V. &van der Maarel E. (1998): Population strategies in severe environments: alpine plants in the northwestern Caucasus.J. Veg. Sci. 9: 27–40.

    Article  Google Scholar 

  • Primack R.B. (1987): Relationship among flowers, fruit and seeds.Annual Rev. Ecol. Syst. 18: 409–430.

    Article  Google Scholar 

  • Rees M. &Westoby M. (1997): Game-theoretical evolution of seed mass in multi-species ecological model.Oikos 78: 116–126.

    Article  Google Scholar 

  • Rees M. (1993): Trade-offs among dispersal strategies in British plants.Nature 366: 150–152.

    Article  Google Scholar 

  • Rees M. (1995): EC-PC comparative analyses?J. Ecol. 83: 891–893.

    Article  Google Scholar 

  • Salisbury E.J. (1942):The reproductive capacity of plants. Bell, London.

    Google Scholar 

  • SAS Institute (1991):SAS/STAT users guide. Release 6.04. SAS Institute, Cary.

    Google Scholar 

  • Silvertown J.M. (1981): Seed size, lifespan and germination date as co-adapted features of plant life history.Amer. Naturalist 118: 860–864.

    Article  Google Scholar 

  • Smith C.C. &Fretwell S.D. (1974): The optimal balance between size and number of offspring.Amer. Naturalist 108: 499–506.

    Article  Google Scholar 

  • Stebbins G.L. (1974):Flowering plants: evolution above the species level. Harvard University Press, Cambridge.

    Google Scholar 

  • Telenius A. &Torstensson P. (1991): Seed wings in relation to seed size in the genus Spergularia.Oikos 61: 216–222.

    Article  Google Scholar 

  • Thompson K. &Grime J.P. (1979): Seasonal variation in the seed banks of herbaceous species in ten contrasting habits.J. Ecol. 67: 893–921.

    Article  Google Scholar 

  • Thompson K. &Rabinowitz D. (1989): Do big plants have big seeds?Amer. Naturalist 133: 722–728.

    Article  Google Scholar 

  • Thompson K. (1984): Why biennials are not as few as they ought to be.Amer. Naturalist 123: 854–861.

    Article  Google Scholar 

  • Thompson K. (1987): Seeds and seed banks.New Phytol. 106(suppl.): 23–34.

    Article  Google Scholar 

  • Westoby M., Jurado E. &Leishman M.R. (1992): Comparative evolutionary ecology of seed size.Trends Ecol. Evol. 7: 368–372.

    Article  Google Scholar 

  • Westoby M., Leishman M.R. &Lord J.M. (1995): On misinterpreting the ‘phylogenetic correction’.J. Ecol. 83: 531–534.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Zhen Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.T., Zhen Du, G. & Chen, J.K. Seed size in relation to phylogeny, growth form and longevity in a subalpine meadow on the east of the Tibetan plateau. Folia Geobot 39, 129–142 (2004). https://doi.org/10.1007/BF02805242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02805242

Keywords

Nomenclature

Navigation