[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The extent of strength in the club filters

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider whether the minimal normal filter onP κλ, the club filter, can have strong properties like saturation, pre-saturation, or cardinal preserving. We prove in a number of cases that the answer is no. In the case of saturation, Foreman and Magidor prove the answer is always no (except in the caseκ =λ = ℵ1—and in this case saturation is known to be consistent).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Baumgartner,On the size of closed unbounded sets, Annals of Pure and Applied Logic54 (1991), 195–227.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. E. Baumgartner and A. D. Taylor,Saturation properties of ideals in generic extensions. I, Transactions of the American Mathematical Society270 (1982), 557–574.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Baumgartner, A. Taylor and S. Wagon,On splitting stationary subsets of large cardinals, Journal of Symbolic Logic42 (1977), 203–214.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Burke and Y. Matsubara,Ideals and combinatorial principles, Journal of Symbolic Logic62 (1997), 117–122.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Cummings,Collapsing successors of singulars, Proceedings of the American Mathematical Society125 (1997), 2703–2709.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Cummings, M. Foreman and M. Magidor,Squares, scales and stationary reflection, preprint.

  7. H.-D. Donder and P. Matet,Two cardinal versions of diamond, Israel Journal of Mathematics83 (1993), 1–43.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Foreman,Potent axioms, Transactions of the American Mathematical Society294 (1986), 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Foreman and M. Magidor,A very weak square principle, Journal of Symbolic Logic62 (1997), 175–196.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Foreman and M. Magidor,Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on P κλ, preprint.

  11. M. Foreman, M. Magidor and S. Shelah,Martin’s maximum, saturated ideals, and nonregular ultrafilters. I, Annals of Mathematics (2)127 (1988), 1–47.

    Article  MathSciNet  Google Scholar 

  12. M. Gitik,Some results on the nonstationary ideal, Israel Journal of Mathematics92 (1995), 61–112.

    MATH  MathSciNet  Google Scholar 

  13. M. Gitik and S. Shelah,Less saturated ideals, Proceedings of the American Mathematical Society125 (1997), 1523–1530.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Goldring,The entire NS ideal on P γμ can be precipitous, Journal of Symbolic Logic62 (1997), 1161–1172.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Goldring,Woodin cardinals and presaturated ideals, Annals of Pure and Applied Logic55 (1992), 285–303.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Hajnal, I. Juhász and S. Shelah,Splitting strongly almost disjoint families, Transactions of the American Mathematical Society295 (1986), 369–387.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Matsubara,Splitting P κλ into stationary subsets, Journal of Symbolic Logic53 (1988), 385–389.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Matsubara and M. Shioya,Nowhere precipitousness of some ideals, Journal of Symbolic Logic63 (1998), 1003–1006.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Shelah,Proper forcing, Lecture Notes in Mathematics, Vol. 940, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  20. S. Shelah,Iterated forcing and normal ideals on ω 1, Israel Journal of Mathematics60 (1987), 345–380.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Burke.

Additional information

The first author was partially supported by NSF grant DMS-9626212.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, D.R., Matsubara, Y. The extent of strength in the club filters. Isr. J. Math. 114, 253–263 (1999). https://doi.org/10.1007/BF02785581

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785581

Keywords

Navigation