Abstract
We prove under the assumption of the existence of a measurable, cardinal and precipitous ideal onw 1 that every Σ 31 set is Lebesgue measurable, has the Baire property and is either countable or contians a perfect subset. We get similar results for Σ 41 sets, if we add the additional assumptions of C. H. and that\(P_w (2^{2w_1 } )\) carries a normal precipitous ideal.
Similar content being viewed by others
References
H. Gaifman,Elementary embeddings of set theory, in Proc. Symposia in Pure Math.13 (2).Axiomatic Set Theory, Amer. Math. Soc., Providence, RI, 1974.
E. Galvin, T. J. Jech and M. Magidor,An ideal game, J. Symbolic Logic43 (1978), 284–292.
L. Harrington,Analytic determinacy and 0#, J. Symbolic Logic, to appear.
T. J. Jech,Set Theory, Academic Press, New York, 1978.
T. J. Jech and K. Prikry,Ideals on sets and the power set operation, Bull. Amer. Math. Soc.82 (1976), 593–595.
T. J. Jech, M. Magidor, W. Mitchell and K. Prikry,On precipitous ideals. J. Symbolic Logic, to appear.
A. Kanamori and M. Magidor,The evolution of large cardinal axioms in set theory, inHigher Set Theory, Lecture notes in Mathematics669, Springer-Verlag, Berlin, Heidelberg, New York, 1978, pp. 99–275.
K. Kunen,Some applications of interated ultrapowers in set theory, Ann. Math. Logic1 (1970), 179–227.
K. Kunen,Saturated ideals, J. Symbolic Logic43 (1978), 65–76.
C. Kuratowski,Topologia, Vol 1, Panstowe Wydawnictwo Naukowe, Warsaw, 1958.
A. Levy and R. M. Solovay,Measurable cardinals and the continuum hypothesis, Israel J. Math5 (1967), 234–248.
J. Łos,Quelques remarques théorèmes et problèmes sur les classes definables d'algèbres, inMathematical Interpretations of Formal Systems, North-Holland, Amsterdam, 1955, pp. 98–113.
R. Mansfield, A Souslin operation for II 21 134-1}, Israel J. Math.9 (1971), 367–379.
D. A. Martin and R. M. Solovay, A basis theorem for Σ 31 134-2} sets of reals, Ann. of Math89 (2) (1969), 138–160.
J. R. Shoenfield,Mathematical Logic, Addison-Wesley, Reading, Menlo Park, London, Don Mills, 1967.
J. R. Shoenfield,Uramified forcing, in Proc. Symposia in Pure Math.13 (1).Axiomatic Set Theory, Amer. Math. Soc., Providence, RI, 1971, pp. 357–381.
R. M. Solovay, A non constructible △ 31 134-3} set of integers, Trans. Amer. Math. Soc.127 (1967), 58–75.
R. M. Solovay, The cardinality of Σ 21 134-4} sets of reals, inFoundations of Mathematics, Symposium papers commemorating the sixtieth birthday of Kurt Godel, Springer-Verlag, Berlin, 1969, pp. 59–73.
R. M. Solovay,A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math.92 (1970), 1–56.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Magidor, M. Precipitous ideals and Σ 41 setssets. Israel J. Math. 35, 109–134 (1980). https://doi.org/10.1007/BF02760941
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02760941