[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Precipitous ideals and Σ 41 setssets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove under the assumption of the existence of a measurable, cardinal and precipitous ideal onw 1 that every Σ 31 set is Lebesgue measurable, has the Baire property and is either countable or contians a perfect subset. We get similar results for Σ 41 sets, if we add the additional assumptions of C. H. and that\(P_w (2^{2w_1 } )\) carries a normal precipitous ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gaifman,Elementary embeddings of set theory, in Proc. Symposia in Pure Math.13 (2).Axiomatic Set Theory, Amer. Math. Soc., Providence, RI, 1974.

    Google Scholar 

  2. E. Galvin, T. J. Jech and M. Magidor,An ideal game, J. Symbolic Logic43 (1978), 284–292.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Harrington,Analytic determinacy and 0#, J. Symbolic Logic, to appear.

  4. T. J. Jech,Set Theory, Academic Press, New York, 1978.

    Google Scholar 

  5. T. J. Jech and K. Prikry,Ideals on sets and the power set operation, Bull. Amer. Math. Soc.82 (1976), 593–595.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. J. Jech, M. Magidor, W. Mitchell and K. Prikry,On precipitous ideals. J. Symbolic Logic, to appear.

  7. A. Kanamori and M. Magidor,The evolution of large cardinal axioms in set theory, inHigher Set Theory, Lecture notes in Mathematics669, Springer-Verlag, Berlin, Heidelberg, New York, 1978, pp. 99–275.

    Chapter  Google Scholar 

  8. K. Kunen,Some applications of interated ultrapowers in set theory, Ann. Math. Logic1 (1970), 179–227.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Kunen,Saturated ideals, J. Symbolic Logic43 (1978), 65–76.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Kuratowski,Topologia, Vol 1, Panstowe Wydawnictwo Naukowe, Warsaw, 1958.

    Google Scholar 

  11. A. Levy and R. M. Solovay,Measurable cardinals and the continuum hypothesis, Israel J. Math5 (1967), 234–248.

    MATH  MathSciNet  Google Scholar 

  12. J. Łos,Quelques remarques théorèmes et problèmes sur les classes definables d'algèbres, inMathematical Interpretations of Formal Systems, North-Holland, Amsterdam, 1955, pp. 98–113.

    Google Scholar 

  13. R. Mansfield, A Souslin operation for II 21 134-1}, Israel J. Math.9 (1971), 367–379.

    MATH  MathSciNet  Google Scholar 

  14. D. A. Martin and R. M. Solovay, A basis theorem for Σ 31 134-2} sets of reals, Ann. of Math89 (2) (1969), 138–160.

    Article  MathSciNet  Google Scholar 

  15. J. R. Shoenfield,Mathematical Logic, Addison-Wesley, Reading, Menlo Park, London, Don Mills, 1967.

    MATH  Google Scholar 

  16. J. R. Shoenfield,Uramified forcing, in Proc. Symposia in Pure Math.13 (1).Axiomatic Set Theory, Amer. Math. Soc., Providence, RI, 1971, pp. 357–381.

    Google Scholar 

  17. R. M. Solovay, A non constructible △ 31 134-3} set of integers, Trans. Amer. Math. Soc.127 (1967), 58–75.

    Article  MathSciNet  Google Scholar 

  18. R. M. Solovay, The cardinality of Σ 21 134-4} sets of reals, inFoundations of Mathematics, Symposium papers commemorating the sixtieth birthday of Kurt Godel, Springer-Verlag, Berlin, 1969, pp. 59–73.

    Google Scholar 

  19. R. M. Solovay,A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math.92 (1970), 1–56.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magidor, M. Precipitous ideals and Σ 41 setssets. Israel J. Math. 35, 109–134 (1980). https://doi.org/10.1007/BF02760941

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760941

Keywords

Navigation