[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On determination of a time-dependent leading coefficient in a parabolic equation

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. A. I. Prilepko and A. B. Kostin, “On inverse problems of determining a coefficient in a parabolic equation. I,” Sibirsk. Mat. Zh.,33, No. 3, 146–155 (1992).

    MATH  Google Scholar 

  2. A. I. Prilepko and A. B. Kostin, “On inverse problems of determining a coefficient in a parabolic equation. II,” Sibirsk. Mat. Zh.,34, No. 3, 147–162 (1993).

    Google Scholar 

  3. B. F. Jones, “The determination of a coefficient in a parabolic differential equation. I,” J. Math. Mech.,11, No. 6, 907–918 (1962).

    MATH  Google Scholar 

  4. A. Lorenzi, “Determination of a time-dependent coefficient in a quasi-linear parabolic equation,” Ricerche Mat.,32, No. 2, 263–284 (1983).

    MATH  Google Scholar 

  5. N. I. Ivanchov, “On the inverse problem of simultaneous determination of thermal conductivity and specific heat capacity,” Sibirsk. Mat. Zh.,35, No. 3, 612–621 (1994).

    Google Scholar 

  6. M. I. Ivanchov, Inverse Problems of Thermal Conductivity with Nonlocal Data [in Ukrainian] [Preprint], Kiev (1995).

  7. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  8. A. N. Tikhonov and A. A. Samarskiî, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  9. A. Friedman, Partial Differential Equations of Parabolic Type [Russian translation], Mir, Moscow (1968).

    MATH  Google Scholar 

  10. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).

    Google Scholar 

Download references

Authors

Additional information

L'vov. Translated fromSibirskiî Matematicheskiî Zhurnal, Vol. 39, No. 3, pp. 539–550, May–June, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanchov, N.I. On determination of a time-dependent leading coefficient in a parabolic equation. Sib Math J 39, 465–475 (1998). https://doi.org/10.1007/BF02673901

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673901

Keywords

Navigation