[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Packing Steiner trees: a cutting plane algorithm and computational results

  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we describe a cutting plane algorithm for the Steiner tree packing problem. We use our algorithm to solve some switchbox routing problems of VLSI-design and report on our computational experience. This includes a brief discussion of separation algorithms, a new LP-based primal heuristic and implementation details. The paper is based on the polyhedral theory for the Steiner tree packing polyhedron developed in our companion paper (this issue) and meant to turn this theory into an algorithmic tool for the solution of practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Benders, “Partitioning procedures for solving mixed-variables programming problems,”Numerische Mathematik 4 (1962) 238–252.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.L. Brady and D.J. Brown, “VLSI routing: Four layers suffice,” in: F.P. Preparata, ed.,Advances in Computing Research. Vol. 2: VLSI Theory (Jai Press, London, 1984) pp. 245–258.

    Google Scholar 

  3. M. Burstein and R. Pelavin, “Hierarchical wire routing,”IEEE Transactions on Computer-Aided-Design CAD-2 (1983) 223–234.

    Article  Google Scholar 

  4. J.P. Cohoon and P.L. Heck, “BEAVER: A computational-geometry-based tool for switchbox routing,”IEEE Transactions on Computer-Aided-Design CAD-7 (1988) 684–697.

    Article  Google Scholar 

  5. G.B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,”Operations Research 8 (1960) 101–111.

    MATH  Google Scholar 

  6. S.E. Dreyfus and R.A. Wagner, “The Steiner problem in graphs,”Networks 1 (1971) 195–207.

    MathSciNet  Google Scholar 

  7. R.E. Erickson, C.L. Monma and A.F. Veinott, “Send-and-split method for minimum concave-cost network flows,”Mathematics of Operations Research 12 (1987) 634–664.

    MATH  MathSciNet  Google Scholar 

  8. M.R. Garey and D.S. Johnson, “The rectilinear Steiner tree problem is-complete,”SIAM Journal on Applied Mathematics 32 (1977) 826–834.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Grötschel and O. Holland, “Solution of large-scale symmetric travelling salesman problems,”Mathematical Programming 51 (1991) 141–202.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Grötschel, A. Martin and R. Weismantel, “Routing in Grid Graphs by Cutting Planes,”Zeitschrift für Operations Research 41 (1995) 255–275.

    MATH  Google Scholar 

  11. M. Grötschel, A. Martin and R. Weismantel, “Packing Steiner trees: separation algorithms,”SIAM Journal on Discrete Mathematics, to appear.

  12. M. Grötschel, A. Martin and R. Weismantel, “Packing Steiner trees: polyhedral investigations,” Mathematical Programming 72 (1996) (this issue).

  13. M. Grötschel and C.L. Monma, “Integer polyhedra associated with certain network design problems with connectivity constraints,”SIAM Journal on Discrete Mathematics 3 (1990) 502–523.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Grötschel, C.L. Monma and M. Stoer, “Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints,”Operations Research 40 (1992) 309–330.

    Article  MATH  MathSciNet  Google Scholar 

  15. R.M. Karp, “Reducibility among combinational problems,” in: R.E. Miller and J.W. Thatcher, eds.,Complexity of Computer Computations (Plenum, New York, 1972) pp. 85–103.

    Google Scholar 

  16. M.R. Kramer and J. van Leeuwen, “The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits,” in: F.P. Preparata, ed.,Advances in Computing Research, Vol. 2: VSLI Theory (Jai Press, London, 1984) pp. 129–146.

    Google Scholar 

  17. T. Lengauer,Combinatorial Algorithms for Integrated Circuit Layout (Wiley, Chichester, 1990).

    MATH  Google Scholar 

  18. W. Lipski, “On the structure of three-layer wireable layouts,” in: F.P. Preparata, ed.,Advances in Computing Research, Vol. 2: VLSI Theory (Jai Press, London, 1984) pp. 231–244.

    Google Scholar 

  19. W.K. Luk, “A greedy switch-box router,”Integration 3 (1985) 129–149.

    Google Scholar 

  20. A. Martin, “Packen von Steinerbäumen: Polyedrische Studien und Anwendung,” Ph.D. Thesis, Technische Universität Berlin, (1992).

  21. M. Padberg and G. Rinaldi, “A branch and cut algorithm for the resolution of large-scale symmetric traveling salesman problems,”SIAM Review 33 (1991) 60–100.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Sarrafzadeh, “Channel-routing problem in the knock-knee mode is-complete,”IEEE Transactions on Computer-Aided-Design CAD-6 (1987) 503–506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grötschel, M., Martin, A. & Weismantel, R. Packing Steiner trees: a cutting plane algorithm and computational results. Mathematical Programming 72, 125–145 (1996). https://doi.org/10.1007/BF02592086

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592086

Keywords

Navigation