[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The splittance of a graph

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

The splittance of an arbitrary graph is the minimum number of edges to be added or removed in order to produce a split graph (i.e. a graph whose vertex set can be partitioned into a clique and an independent set). The splittance is seen to depend only on the degree sequence of the graph, and an explicit formula for it is derived. This result allows to give a simple characterization of the degree sequences of split graphs. Worst cases for the splittance are determined for some classes of graphs (the class of all graphs, of all trees and of all planar graphs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berge,Graphes et Hypergraphes. Dunod, Paris, 1970.

    MATH  Google Scholar 

  2. A. Bondy andU. S. R. Murty,Graph Theory with Applications, MacMillan, London, 1976.

    Google Scholar 

  3. V. Chvatal andP. L. Hammer, Aggregation of Inequalities in integer programming,Annals of Discrete Mathematics,1 (1977), 145–162.

    Article  MathSciNet  Google Scholar 

  4. P. Erdős andT. Gallai, Graphen mit Punkten vorgeschriebenen Grades,Mat. Lapok,11 (1960), 264–274.

    Google Scholar 

  5. S. Földes andP. L. Hammer, On a class of matroid producing graphs,Coll. Math. Soc. J. Bolyai, Combinatorics, Budapest,18 (1978), 331–352.

    Google Scholar 

  6. S. Földes andP. L. Hammer, Split graphs,Proceedings of the 8th South-Eastern Conference on Combinatorics, Graph Theory and Computing, (1977), 311–315.

  7. M. R. Garey, D. S. Johnson andL. Stockmeyer, Some simplified NP-complete Problems,Proc. 6th ACM Symp. on Theory of Computing, Seattle (1974).

  8. P. L. Hammer, T. Ibaraki andB. Simeone, Threshold sequences,SIAM J. on Algebraic and Discrete Methods,2 (1981), 39–49.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. B. Owens, On the Planarity of Regular Incidence Sequences,J. of Comb. Theory (B),11 (1971), 201–212.

    Article  MATH  MathSciNet  Google Scholar 

  10. U. N. Peled, Matroidal Graphs,Discr. Math.,20 (1977), 263–286.

    MathSciNet  Google Scholar 

  11. H. J. Ryser,Combinatorial Mathematics, Carus Monographs, American Mathematical Society (1963).

  12. E. F. Schmeichel andS. L. Hakimi, On planar graphical degree sequences,SIAM J. of Appl. Math.,32 (1977), 598–609.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, P.L., Simeone, B. The splittance of a graph. Combinatorica 1, 275–284 (1981). https://doi.org/10.1007/BF02579333

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579333

AMS subject classification (1980)

Navigation