Abstract
The minimum dimension needed to representK(m, n) as a “unit neighborhood graph” in Euclidean space is considered. Some upper and lower bounds on this dimension are given, and the exact values of the dimension are calculated form≤3,n≤10.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P. C. Fishburn, On the sphericity and cubicity of graphs,J. Combin. Theory Ser. B 35 (1983), 309–318.
P. Frankl and H. Maehara, Embedding then-cube in lower dimensions,European J. Combin 7 (1986), 221–225.
P. Frankl and H. Maehara, On the contact dimension of graphs,Discrete Comput. Geom. 3 (1988), 89–96.
L. C. Freeman, Spheres, cubes, and boxes: graph dimensionality and network structure,Social Network 5 (1983), 139–156.
H. Maehara, Convex bodies forming pairs of constant width,J. Geom. 22 (1984), 101–107.
H. Maehara, Space graphs and sphericity,Discrete Appl. Math. 7 (1984), 55–64.
H. Maehara, On the sphericity for the join of many graphs,Discrete Math. 49 (1984), 311–313.
H. Maehara, Contact patterns of equal nonoverlapping spheres,Graphs Combin 1 (1985), 271–282.
H. Maehara, Sphericity exceeds cubicity for almost all complete bipartite graphs,J. Combin. Theory Ser. B 40 (1986), 231–235.
H. Maehara, On the sphericity of the graphs of semi-regular polyhedra,Discrete Math. 58 (1986), 311–315.
H. Maehara, J. Reiterman, V. Rödl, and E. Ŝimňajova, Embedding trees in Euclidean spaces,Graphs Combin. 4 (1988), 43–47.
J. Reiterman, V. Rödl, and E. Ŝiňajova, Geometrical embedding of graphs,Discrete Math., to appear.
K. Schutte and B. L. Van der Waerden, Auf welcher kugel haben 5, 6, 7, 8, order 9 punkte mit Mindestabstand Ein Platz?,Math. Ann. 123 (1951), 96–124.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Maehara, H. Dispersed points and geometric embedding of complete bipartite graphs. Discrete Comput Geom 6, 57–67 (1991). https://doi.org/10.1007/BF02574674
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02574674