Summary
Differential equations of infinite order of the form\(\sum\limits_{k = 1}^\infty {M_k \left( x \right)y^{\left( k \right)} \left( x \right) = \lambda y\left( x \right)} \), where Mk is a polynomial of degree ≦k, have polynomial solutions for suitable values of λ. Necessary and sufficient conditions are given in order that these solutions form a set of orthogonal polynomials. The cases where\(\mathop {\max }\limits_k \) { degree Mk }=1 and 2 are studied in detail.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
W. Hahn,Über die Jacobischen Polynome und zwei verwandte Polynom-Klassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634–638.
H. L. Krall,On Orthogonal Polynomials Satisfying a Certain Fourth Order Differential Equation, The Pennsylvania State College Studies, No. 6 (1940), pp. 1–24.
H. L. Krall andOrrin Frink.A New Class of Orthogonal Polynomials: The Bessel Polynomials, Transactions of the American Mathematical Society, vol. 65 (1949), pp. 100–115.
H. L. Krall andI. M. Sheffer,A Characterization of Orthogonal Polynomials, Journal of Mathematical Analysis and Applications, vol. 8 (1964), pp. 232–244.
I. M. Sheffer,Some Properties of Polynomial Sets of Type Zero, Duke Mathematical Journal, vol. 5 (1939), pp. 590–622.
J. Shohat,Sur les Polynômes Orthogonaux Généralisés, Comptes Rendus, vol. 207 (1938), pp. 556–558.
Author information
Authors and Affiliations
Additional information
Supported by N.S.F. Grant GP-5311.
Rights and permissions
About this article
Cite this article
Krall, H.L., Sheffer, I.M. Differential equations of infinite order for orthogonal polynomials. Annali di Matematica 74, 135–172 (1966). https://doi.org/10.1007/BF02416454
Issue Date:
DOI: https://doi.org/10.1007/BF02416454