[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Scheduling project networks with resource constraints and time windows

  • Section III Quantitative Models, Data Structuring And Information Processing
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Project networks with time windows are generalizations of the well-known CPM and MPM networks that allow for the introduction of arbitrary minimal and maximal time lags between the starting and completion times of any pair of activities.

We consider the problem to schedule such networks subject to arbitrary (even time dependent) resource constraints in order to minimize an arbitrary regular performance measure (i.e. a non-decreasing function of the vector of completion times). This problem arises in many standard industrial construction or production processes and is therefore particularly suited as a background model in general purpose decision support systems.

The treatment is done by a structural approach that involves a generalization of both the disjunctive graph method in job shop scheduling [1] and the order theoretic methods for precedence constrained scheduling [18,23,24]. Besides theoretical insights into the problem structure, this approach also leads to rather powerful branch-and-bound algorithms. Computational experience with this algorithm is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Balas, Project scheduling with resource constraints, in:Applications of Mathematical Programming, ed. E.M.L. Beale (The English University Press, London, 1971) 187–200.

    Google Scholar 

  2. M. Bartusch, An algorithm for generating all maximal independent subsets of a poset, Computing 26 (1983) 343–354.

    Google Scholar 

  3. M. Bartusch, Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln, Thesis, Tech. Univ. of Aachen, 1983.

  4. M. Bartusch, R.H. Möhring and F.J. Radermacher, A conceptional outline of a DSS for scheduling problems in the building industry, Decision Support Systems (1988) to appear.

  5. C. Berge,Graphs (North Holland, Amsterdam, 1985).

    Google Scholar 

  6. J. Carlier, Ordonnancements á constraintes disjonctives, RAIRO 12 (1978) 333–351.

    Google Scholar 

  7. J. Carlier and E. Pinson, A branch and bound method for the jobshop problem, preprint, Université de technologie de Compiegne, 1986.

  8. R.W. Conway, W.L. Maxwell and L.W. Miller,Theory of Scheduling (Addison-Wesley, Reading, MA, 1967).

    Google Scholar 

  9. M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, eds.Deterministic and Stochastic Scheduling (Reidel, Dordrecht, 1982).

    Google Scholar 

  10. S.E. Elmaghraby,Activity Networks: Project Planning and Control by Network Models (Wiley, New York, 1977).

    Google Scholar 

  11. M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).

    Google Scholar 

  12. M. Glinz and R.H. Möhring, Reduction theorems for networks with general sequencing relations, Methods of Oper. Res. 27 (1977) 124–162.

    Google Scholar 

  13. W. Jurecka,Netzwerkplanung im Baubetrieb, Teil 2 (Optimierungsverfahren Bauverlag GmbH, Wiesbaden, 1972).

    Google Scholar 

  14. E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976).

    Google Scholar 

  15. E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Recent developments in deterministic sequencing and scheduling: a survey, in:Deterministic and Stochastic Scheduling, eds. M.A.H. Dempster et al. (Reidel, Dordrecht, 1982).

    Google Scholar 

  16. J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of scheduling under precedente constraints, Oper. Res. 26 (1978) 22–35.

    Google Scholar 

  17. G. Mendzigal, Entwurf und Vergleich von Algorithmen zur Optimierung von deterministischen Netzplänen mit Betriebsmittelbeschränkungen, Master Thesis, RWTH Aachen (supervisor: R.H. Möhring), 1984.

  18. R.H. Möhring, Minimizing costs of resource requirements in project networks subject to a fixed completion time, Oper. Res. 32 (1984) 89–120.

    Google Scholar 

  19. R.H. Möhring, Algorithmic aspects of comparability graphs and interval graphs, in:Graphs and Orders, ed. I. Rival (Reidel, Dordrecht, 1985) p. 41–101.

    Google Scholar 

  20. R.H. Möhring and F.J. Radermacher, Scheduling problems with resource-duration interaction, Methods of Oper. Res. 48 (1984) 423–452.

    Google Scholar 

  21. K. Neumann,Operations Research Verfahren, Band III (Carl Hauser Verlag, München, 1975).

    Google Scholar 

  22. J. Patterson, R. Slowinski, B. Talbot and J. Weglarz, An algorithm for a general class of precedence and resource constrained scheduling problems, 1982, preprint.

  23. F.J. Radermacher,Kapazitätsoptimierung in Netzplänen, Math. Syst. in Econ. 40 (Anton Hain, Meisenheim, 1978).

    Google Scholar 

  24. F.J. Radermacher, Scheduling of project networks, Annals of Oper. Res. 4 (1986) 227–252.

    Google Scholar 

  25. F.J. Radermacher, Schedule-induced posets, Discrete Appl. Math 14 (1986) 67–91.

    Google Scholar 

  26. A.H.G. Rinnooy Kan,Machine Scheduling Problems: Classification, Complexity and Computation (Nijhoff, The Hague, 1976).

    Google Scholar 

  27. B. Roy, Cheminement et Connexité dans les graphes, Application aux problèmes d'ordonnancement, METRA, Série Spéciale, No. 1, (Thesis), 1962.

  28. B. Roy, Graphes et Ordonnancement, Revue Française de Recherche Opérationelle (1962) 323–333.

  29. J. Schwarze, Netzplantechnik für Praktiker (Verlag Neue Wirtschaftsbriefe, Herne/Berlin, 1974).

    Google Scholar 

  30. R. Seeling, Reihenfolgenprobleme in Netzplänen, Bauwirtschaft (1972) 1897–1904.

  31. F.B. Talbot and J.H. Patterson, An efficient integer programming algorithm with network cuts for solving resource-constrained scheduling problems, Management Sci. 24 (1978) 1136–1174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartusch, M., Möhring, R.H. & Radermacher, F.J. Scheduling project networks with resource constraints and time windows. Ann Oper Res 16, 199–240 (1988). https://doi.org/10.1007/BF02283745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02283745

Keywords

Navigation