Abstract
Project networks with time windows are generalizations of the well-known CPM and MPM networks that allow for the introduction of arbitrary minimal and maximal time lags between the starting and completion times of any pair of activities.
We consider the problem to schedule such networks subject to arbitrary (even time dependent) resource constraints in order to minimize an arbitrary regular performance measure (i.e. a non-decreasing function of the vector of completion times). This problem arises in many standard industrial construction or production processes and is therefore particularly suited as a background model in general purpose decision support systems.
The treatment is done by a structural approach that involves a generalization of both the disjunctive graph method in job shop scheduling [1] and the order theoretic methods for precedence constrained scheduling [18,23,24]. Besides theoretical insights into the problem structure, this approach also leads to rather powerful branch-and-bound algorithms. Computational experience with this algorithm is reported.
Similar content being viewed by others
References
E. Balas, Project scheduling with resource constraints, in:Applications of Mathematical Programming, ed. E.M.L. Beale (The English University Press, London, 1971) 187–200.
M. Bartusch, An algorithm for generating all maximal independent subsets of a poset, Computing 26 (1983) 343–354.
M. Bartusch, Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln, Thesis, Tech. Univ. of Aachen, 1983.
M. Bartusch, R.H. Möhring and F.J. Radermacher, A conceptional outline of a DSS for scheduling problems in the building industry, Decision Support Systems (1988) to appear.
C. Berge,Graphs (North Holland, Amsterdam, 1985).
J. Carlier, Ordonnancements á constraintes disjonctives, RAIRO 12 (1978) 333–351.
J. Carlier and E. Pinson, A branch and bound method for the jobshop problem, preprint, Université de technologie de Compiegne, 1986.
R.W. Conway, W.L. Maxwell and L.W. Miller,Theory of Scheduling (Addison-Wesley, Reading, MA, 1967).
M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, eds.Deterministic and Stochastic Scheduling (Reidel, Dordrecht, 1982).
S.E. Elmaghraby,Activity Networks: Project Planning and Control by Network Models (Wiley, New York, 1977).
M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
M. Glinz and R.H. Möhring, Reduction theorems for networks with general sequencing relations, Methods of Oper. Res. 27 (1977) 124–162.
W. Jurecka,Netzwerkplanung im Baubetrieb, Teil 2 (Optimierungsverfahren Bauverlag GmbH, Wiesbaden, 1972).
E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976).
E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Recent developments in deterministic sequencing and scheduling: a survey, in:Deterministic and Stochastic Scheduling, eds. M.A.H. Dempster et al. (Reidel, Dordrecht, 1982).
J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of scheduling under precedente constraints, Oper. Res. 26 (1978) 22–35.
G. Mendzigal, Entwurf und Vergleich von Algorithmen zur Optimierung von deterministischen Netzplänen mit Betriebsmittelbeschränkungen, Master Thesis, RWTH Aachen (supervisor: R.H. Möhring), 1984.
R.H. Möhring, Minimizing costs of resource requirements in project networks subject to a fixed completion time, Oper. Res. 32 (1984) 89–120.
R.H. Möhring, Algorithmic aspects of comparability graphs and interval graphs, in:Graphs and Orders, ed. I. Rival (Reidel, Dordrecht, 1985) p. 41–101.
R.H. Möhring and F.J. Radermacher, Scheduling problems with resource-duration interaction, Methods of Oper. Res. 48 (1984) 423–452.
K. Neumann,Operations Research Verfahren, Band III (Carl Hauser Verlag, München, 1975).
J. Patterson, R. Slowinski, B. Talbot and J. Weglarz, An algorithm for a general class of precedence and resource constrained scheduling problems, 1982, preprint.
F.J. Radermacher,Kapazitätsoptimierung in Netzplänen, Math. Syst. in Econ. 40 (Anton Hain, Meisenheim, 1978).
F.J. Radermacher, Scheduling of project networks, Annals of Oper. Res. 4 (1986) 227–252.
F.J. Radermacher, Schedule-induced posets, Discrete Appl. Math 14 (1986) 67–91.
A.H.G. Rinnooy Kan,Machine Scheduling Problems: Classification, Complexity and Computation (Nijhoff, The Hague, 1976).
B. Roy, Cheminement et Connexité dans les graphes, Application aux problèmes d'ordonnancement, METRA, Série Spéciale, No. 1, (Thesis), 1962.
B. Roy, Graphes et Ordonnancement, Revue Française de Recherche Opérationelle (1962) 323–333.
J. Schwarze, Netzplantechnik für Praktiker (Verlag Neue Wirtschaftsbriefe, Herne/Berlin, 1974).
R. Seeling, Reihenfolgenprobleme in Netzplänen, Bauwirtschaft (1972) 1897–1904.
F.B. Talbot and J.H. Patterson, An efficient integer programming algorithm with network cuts for solving resource-constrained scheduling problems, Management Sci. 24 (1978) 1136–1174.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bartusch, M., Möhring, R.H. & Radermacher, F.J. Scheduling project networks with resource constraints and time windows. Ann Oper Res 16, 199–240 (1988). https://doi.org/10.1007/BF02283745
Issue Date:
DOI: https://doi.org/10.1007/BF02283745