Abstract
A class of variable order composite quadrature formulas for the numerical integration of functions with a singularity in or near to the region of integration is introduced. Exponential convergence of the method is shown for all integrands in the countably normed spaceB β. Numerical examples are presented which demonstrate that the asymptotic exponential convergence rates obtained here are sharp and already observed for a small number of quadrature points.
Zusammenfassung
Wir stellen eine Klasse von zusammengesetzten Quadraturformeln variabler Ordnung vor, die sich zur numerischen Integration von Funktionen mit einer Singularität im Inneren oder in der Nähe des Integrationsbereichs eignen. Für alle Integranden in dem abzählbar normierten RaumB β wird eine exponentielle Konvergenz des Verfahrens bewiesen. Numerische Beispiele zeigen, daß die ermittelten asymptotischen exponentiellen Konvergenzraten scharf sind und schon bei einer kleinen Zahl von Quadraturknoten erreicht werden.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bergh, I., Lofström, J.: Interpolation spaces. Berlin Heidelberg New York: Springer 1976.
Babuška, I., Guo, B. Q.: Regularity of the solution of elliptic problems with piecewise analytic data I: boundary value problems for linear elliptic equations of second order. SIAM J. Math. Anal.19 172–203 (1988).
Dorr, M.: The approximation theory of thep-version of the finite element method. SIAM J. Num. Anal.21, 1180–1207 (1984).
Guo, B. Q., Babuška, I.: Theh−p version of the finite element method. Part I: The basic approximation results. Comput. Mech.1, 21–24 (1986), Part II: General results and applications, ibid. Comput. Mech. 203–220.
Gelfand, I. M., Shilov, G. E.: Generalized functions, vol. 2. New York: Academic Press 1964.
Hackbusch, W., Sauter, S.: Evaluation of nearly singular integrals in the boundary element method. Computing52, 139–159 (1994).
Huang, Q., Cruse, T.: Some notes on singular integral techniques in boundary element analysis. Int. J. Num. Meth. Eng.36, 2643–2659 (1993).
Kieser, R., Schwab, C., Wendland, W. L.: Numerical evaluation of singular and finite-part surface integrals on curved surfaces using symbolic manipulation. Computing49, 279–301 (1992).
Lyness, J. N.: Quadrature error functional expansions for the simplex when the integrand function has singularities at vertices. Math. Comp.34, 213–225 (1980).
Scherer, K.: On optimal global error bounds obtained by scaled local error estimates. Num. Math.36, 151–176 (1981).
Schwab, C.: A note on variable knot, variable order composite quadrature for integrands with power singularities. In: Proc. of the NATO ARW on numerical integration, Bergen, Norway 1991 (Genz, A., Espelid, T., eds.), pp. 343–347. Dordrecht: Kluwer 1992.
Schwab, C., Wendland, W. L.: On numerical cubatures of singular surface integrals in boundary element methods. Num. Math.62, 343–369 (1992).
Schwab, C., Wendland, W. L.: Kernel properties and representations of boundary integral operators. Math. Nach.156, 187–218 (1992).
Schwab, C., Wendland, W. L. (in preparation).
Yang, Y., Atkinson, K.: Numerical integration for multivariable functions with point singularities. Technical Report No. 41, Department of Mathematics, Univ. of Iowa, Iowa City, IA 52242, USA, June 1993.
Author information
Authors and Affiliations
Additional information
This research was supported in part by the AFOSR under grant No. F49620-J-0100.
Rights and permissions
About this article
Cite this article
Schwab, C. Variable order composite quadrature of singular and nearly singular integrals. Computing 53, 173–194 (1994). https://doi.org/10.1007/BF02252988
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252988