[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Variable order composite quadrature of singular and nearly singular integrals

Zusammengesetzte Quadratur variabler Ordnung für singuläre und fastsinguläre Integrale

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A class of variable order composite quadrature formulas for the numerical integration of functions with a singularity in or near to the region of integration is introduced. Exponential convergence of the method is shown for all integrands in the countably normed spaceB β. Numerical examples are presented which demonstrate that the asymptotic exponential convergence rates obtained here are sharp and already observed for a small number of quadrature points.

Zusammenfassung

Wir stellen eine Klasse von zusammengesetzten Quadraturformeln variabler Ordnung vor, die sich zur numerischen Integration von Funktionen mit einer Singularität im Inneren oder in der Nähe des Integrationsbereichs eignen. Für alle Integranden in dem abzählbar normierten RaumB β wird eine exponentielle Konvergenz des Verfahrens bewiesen. Numerische Beispiele zeigen, daß die ermittelten asymptotischen exponentiellen Konvergenzraten scharf sind und schon bei einer kleinen Zahl von Quadraturknoten erreicht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bergh, I., Lofström, J.: Interpolation spaces. Berlin Heidelberg New York: Springer 1976.

    Google Scholar 

  2. Babuška, I., Guo, B. Q.: Regularity of the solution of elliptic problems with piecewise analytic data I: boundary value problems for linear elliptic equations of second order. SIAM J. Math. Anal.19 172–203 (1988).

    Google Scholar 

  3. Dorr, M.: The approximation theory of thep-version of the finite element method. SIAM J. Num. Anal.21, 1180–1207 (1984).

    Google Scholar 

  4. Guo, B. Q., Babuška, I.: Theh−p version of the finite element method. Part I: The basic approximation results. Comput. Mech.1, 21–24 (1986), Part II: General results and applications, ibid. Comput. Mech. 203–220.

    Google Scholar 

  5. Gelfand, I. M., Shilov, G. E.: Generalized functions, vol. 2. New York: Academic Press 1964.

    Google Scholar 

  6. Hackbusch, W., Sauter, S.: Evaluation of nearly singular integrals in the boundary element method. Computing52, 139–159 (1994).

    Google Scholar 

  7. Huang, Q., Cruse, T.: Some notes on singular integral techniques in boundary element analysis. Int. J. Num. Meth. Eng.36, 2643–2659 (1993).

    Google Scholar 

  8. Kieser, R., Schwab, C., Wendland, W. L.: Numerical evaluation of singular and finite-part surface integrals on curved surfaces using symbolic manipulation. Computing49, 279–301 (1992).

    Google Scholar 

  9. Lyness, J. N.: Quadrature error functional expansions for the simplex when the integrand function has singularities at vertices. Math. Comp.34, 213–225 (1980).

    Google Scholar 

  10. Scherer, K.: On optimal global error bounds obtained by scaled local error estimates. Num. Math.36, 151–176 (1981).

    Google Scholar 

  11. Schwab, C.: A note on variable knot, variable order composite quadrature for integrands with power singularities. In: Proc. of the NATO ARW on numerical integration, Bergen, Norway 1991 (Genz, A., Espelid, T., eds.), pp. 343–347. Dordrecht: Kluwer 1992.

    Google Scholar 

  12. Schwab, C., Wendland, W. L.: On numerical cubatures of singular surface integrals in boundary element methods. Num. Math.62, 343–369 (1992).

    Google Scholar 

  13. Schwab, C., Wendland, W. L.: Kernel properties and representations of boundary integral operators. Math. Nach.156, 187–218 (1992).

    Google Scholar 

  14. Schwab, C., Wendland, W. L. (in preparation).

  15. Yang, Y., Atkinson, K.: Numerical integration for multivariable functions with point singularities. Technical Report No. 41, Department of Mathematics, Univ. of Iowa, Iowa City, IA 52242, USA, June 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the AFOSR under grant No. F49620-J-0100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, C. Variable order composite quadrature of singular and nearly singular integrals. Computing 53, 173–194 (1994). https://doi.org/10.1007/BF02252988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252988

AMS Subject Classification

Key words

Navigation