[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The median procedure for n-trees

  • Authors Of Articles
  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Let (X,d) be a metric space The functionM:X k → 2x defined by\(M(x_1 ,,x_k ) = \{ x \in X:\sum\limits_{i = 1}^k {d(x,x_i )}\) is the minimum } is called themedian procedure and has been found useful in various applications involving the notion of consensus Here we present axioms that characterizeM whenX is a certain class of trees (hierarchical classifications), andd is the symmetric difference metric

Résumé

Soit (X, d) un espace métrique On appelleprocédure médiane la fonctionM deX k dans 2X définie par:

$$M(x_1 ,,x_k ) = \{ x \in X|\Sigma _{i = 1}^k d(x,x_i )est minimum\} $$

Cette procédure médiane s'est avèrée fort utile, en particulier pour des problèmes de consensus Dans cet article, nous proposons une caractèrisation axiomatique deM, dans le cas oúX est l'ensemble des classifications hierarchies d'un ensemble d'objets et oùd est la distance de la différence symétrique (cette distance dénombre les classes dont deux hierarchies différent)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BANDELT, H J, and BARTHELEMY, J P (1984), “Medians in Median Graphs,”Discrete Applied Mathematics, 8, 131–142

    Google Scholar 

  • BARTHELEMY, J P, and MONJARDET, B (1981), “The Median Procedure in CLuster Analysis and Social Choice Theory,”Mathematical Social Sciences, 1, 235–267

    Google Scholar 

  • BOBISUD, H M, and BOBISUD, L E (1972), “A Metric for Classifications,”Taxon, 21, 607–613

    Google Scholar 

  • MARGUSH, T, and MCMORRIS, F R (1981), “Consensus n-Trees,”Bulletin of Mathematical Biology, 43, 239–244

    Google Scholar 

  • PENNY, D, FOULDS, L R, and HENDY, M D (1982), “Testing the Theory of Evolution by Comparing Phylogenetic Trees Constructed from Five Different Protein Sequences,”Nature, 297, 197–200

    Google Scholar 

  • YOUNG, H P, and LEVENGLICK, A (1978), “A Consistent Extension of Condorcet's Election Principle,”SIAM Journal of Applied Mathematics, 35, 285–300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We would like to thank the referees and Editor for helpful comments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthélemy, JP., McMorris, F.R. The median procedure for n-trees. Journal of Classification 3, 329–334 (1986). https://doi.org/10.1007/BF01894194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01894194

Keywords

Navigation