Summary
We investigate contractivity properties of explicit linear multistep methods in the numerical solution of ordinary differential equations. The emphasis is on the general test-equation\(\frac{d}{{dt}}U(t) = AU(t)\), whereA is a square matrix of arbitrary orders≧1. The contractivity is analysed with respect to arbitrary norms in thes-dimensional space (which are not necessarily generated by an inner product). For given order and stepnumber we construct optimal multistep methods allowing the use of a maximal stepsize.
Similar content being viewed by others
References
Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. R.A.I.R.O. Analyse Numérique12, 237–245 (1978)
Gantmacher, F.R.: Applications of the theory of matrices. New York: Interscience 1959
Van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numer. Math.49, 413–424 (1986)
Henrici, P.: Discrete variable methods in ordinary differential equations. New York London: Wiley 1962
Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math.37, 61–69 (1981)
Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math.48, 303–322 (1986)
Lambert, J.P.: Computational methods in ordinary differential equations. London: Wiley 1973
Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Dept. of Math. and Comp. Sc., University of Leiden, report TW-87-07 (1987)
Nevanlinna, O., Liniger, W.: Contractive methods for stiff differential equations. BIT18, 457–474 (1978); BIT19, 53–72 (1979)
Rockafeller, R.T.: Convex analysis. Princeton University Press 1970
Sand, J.: Circle contractive linear multistep methods. BIT26, 114–122 (1986)
Siemieniuch, J.L., Gladwell, I.: Analysis of explicit difference methods for a diffusion-convection equation. Int. J. Numer. Math. Engin.12, 899–916 (1978)
Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math.42, 271–290 (1983)
Vanselow, R.: Nonlinear stability behaviour of linear multistep methods. BIT23, 388–396 (1983)
Author information
Authors and Affiliations
Additional information
This research has been supported by the Netherlands organisation for scientific research (NWO)
Rights and permissions
About this article
Cite this article
Lenferink, H.W.J. Contractivity preserving explicit linear multistep methods. Numer. Math. 55, 213–223 (1989). https://doi.org/10.1007/BF01406515
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01406515