[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Contractivity preserving explicit linear multistep methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We investigate contractivity properties of explicit linear multistep methods in the numerical solution of ordinary differential equations. The emphasis is on the general test-equation\(\frac{d}{{dt}}U(t) = AU(t)\), whereA is a square matrix of arbitrary orders≧1. The contractivity is analysed with respect to arbitrary norms in thes-dimensional space (which are not necessarily generated by an inner product). For given order and stepnumber we construct optimal multistep methods allowing the use of a maximal stepsize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. R.A.I.R.O. Analyse Numérique12, 237–245 (1978)

    Google Scholar 

  2. Gantmacher, F.R.: Applications of the theory of matrices. New York: Interscience 1959

    Google Scholar 

  3. Van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numer. Math.49, 413–424 (1986)

    Google Scholar 

  4. Henrici, P.: Discrete variable methods in ordinary differential equations. New York London: Wiley 1962

    Google Scholar 

  5. Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math.37, 61–69 (1981)

    Google Scholar 

  6. Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math.48, 303–322 (1986)

    Google Scholar 

  7. Lambert, J.P.: Computational methods in ordinary differential equations. London: Wiley 1973

    Google Scholar 

  8. Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Dept. of Math. and Comp. Sc., University of Leiden, report TW-87-07 (1987)

  9. Nevanlinna, O., Liniger, W.: Contractive methods for stiff differential equations. BIT18, 457–474 (1978); BIT19, 53–72 (1979)

    Google Scholar 

  10. Rockafeller, R.T.: Convex analysis. Princeton University Press 1970

  11. Sand, J.: Circle contractive linear multistep methods. BIT26, 114–122 (1986)

    Google Scholar 

  12. Siemieniuch, J.L., Gladwell, I.: Analysis of explicit difference methods for a diffusion-convection equation. Int. J. Numer. Math. Engin.12, 899–916 (1978)

    Google Scholar 

  13. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math.42, 271–290 (1983)

    Google Scholar 

  14. Vanselow, R.: Nonlinear stability behaviour of linear multistep methods. BIT23, 388–396 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the Netherlands organisation for scientific research (NWO)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenferink, H.W.J. Contractivity preserving explicit linear multistep methods. Numer. Math. 55, 213–223 (1989). https://doi.org/10.1007/BF01406515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01406515

Subject Classifications

Navigation