Abstract
We show lower bounds for depth of arithmetic networks over algebraically closed fields, real closed fields and the field of the rationals. The parameters used are either the degree or the number of connected components. These lower bounds allow us to show the inefficiency of arithmetic networks to parallelize several natural problems. For instance, we show a √n lower bound for parallel time of the Knapsack problem over the reals and also that the computation of the “integer part” is not well parallelizable by arithmetic networks. Over the rationals we obtain results of similar order and that the Knapsack has an √n lower bound for the parallel time measured by networks. A simply exponential lower bound for the parallel time of quantifier elimination is also shown. Finally, separations among classesP K andNC K are available for fieldsK in the above cases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aho, A., Hopcroft, J., Ullman J.: The Design and Analysis of Computer Algorithms. Toronto: Addison-Wesley 1976
Ben-Or, M.: Lower bounds for algebraic computation trees. A.C.M. 15th Symp Theory Comput., pp. 80–86 (1983)
Benedetti, R., Risler, J. J.: Real algebraic and semialgebraic sets. Paris: Hermann 1990
Blum, L., Shub, M., Smale S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Am. Math. Soc.21(1), 1–46 (1989)
Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Ergebnisse der Math., 3. Folge, Bd. 12. Berlin Heidelberg New York: Springer 1987
Cucker, F.: “P ℝ ≠NC ℝ”. To appear in J. of Complexity
Cucker, F., Montaña, J. L., Pardo, L. M.: Time Bounded Computations over the Reals. To appear in Int. J. Algebra Comp.
Cucker, F., Torrecillas, A.: Two P-complete problems in the theory of the reals. To appear in Proceedings of ICALP '91, Madrid, 1991
Davenport, J. H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb Comput. Soc.5, 29–36, New York: Academic Press 1988
Dobkin, D. P., Lipton, R. J.: A lower bound of 1/2n 2 on linear search programs for solving the Knapsack problem. JCSS18, 86–91 (1976)
Fitchas, N., Galligo, A., Morgenstern, A.: Algorithmes rapides en séquentiel et en parallele pour l'élimination de quantificateurs en géométrie élémentaire. Seminaire de Structures Algebriques Ordennes, Universite de Paris VII, 1987
Von zur Gathen, J.: Parallel arithmetic computations: a survey. Mathematical Foundations on computer Science, 13th Proc. MFCS, 1986
Von zur Gathen, J.: Algebraic Complexity Theory. Technical Report of the Department of Computer Science. University of Toronto, 1988
Grigor'ev, D.: Complexity of deciding Tarski algebra. J. Symb. Comp.5, 65–108 (1988)
Grigorev, D.: Lower bounds in algebraic computational complexity. J. Sov. Math.,4, 1388–1425 (1985)
Heintz, J.: Definability and fast quantifier elimination over algebraically closed fields. Theor. Comp. Sci.24, 239–278 (1983). CORRIGENDUM in Theor. Comp. Science39, 343 (1985)
Heintz, J. Roy, M.-F., Solerno, P.: Sur la Complexité du Principe de Tarski-Seidenberg. Bull. Soc. Math. France118, 101–126 (1990)
Kung, H. T.: New algorithms and lower bounds for the parallel evaluation of certain rational expressions and recurrences. J. ACM23, 534–543 (1976)
Meyer auf der Heide F.: On genuinely time bounded computations. Symp. Theor. Aspects Comp. LNCS349, 1–16, Berlin Heidelberg New York: Springer 1989
Meyer auf der Heide, F.: A Polynomial Linear Search Algorithm for then-dimensional Knapsack Problem. J. ACM,31(3), 668–676 (1984)
Milnor, J.: On the Betti numbers of real algebraic varieties. Proc. AMS15, 275–280 (1964)
Montaña, J. L., Pardo, L. M., Recio, T.: The non-scalar model of complexity in computational geometry. Proc. of MEGA '90, Progress in Math. 94. Basel Birkhäuser, pp. 347–362 (1991)
Montaña, J. L.: Cotas inferiores en teoría de la complejidad algebraica. Doctoral Thesis. Universidad de Cantabria, 1992
Pardo, L. M., Recio, T.: Arboles algebraicos: un modelo de computación en geometria. Contribuciones Cientificas, pp. 241–248, Universidad de Cantabria, 1988
Rabin, M.: Proving simultaneous positivity of linear forms. J. Comp. Syst. Sci.,6, 639–650 (1972)
Smale, S.: On the topology of algorithms, I, J. Complexity,3, 81–89 (1987)
Strassen, V.: Algebraic Complexity Theory. Hand Book of Theoretical Computer Science, capitulo11, 634–671 (1990)
Author information
Authors and Affiliations
Additional information
Dedicated to the Memory of Mario Raimondo
Partially supported by DGICyT PB 89/0379 and “POSSO”, ESPRIT-BRA 6846
Rights and permissions
About this article
Cite this article
Montaña, J.L., Pardo, L.M. Lower bounds for arithmetic networks. AAECC 4, 1–24 (1993). https://doi.org/10.1007/BF01270397
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01270397