[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Abstract

We show lower bounds for depth of arithmetic networks over algebraically closed fields, real closed fields and the field of the rationals. The parameters used are either the degree or the number of connected components. These lower bounds allow us to show the inefficiency of arithmetic networks to parallelize several natural problems. For instance, we show a √n lower bound for parallel time of the Knapsack problem over the reals and also that the computation of the “integer part” is not well parallelizable by arithmetic networks. Over the rationals we obtain results of similar order and that the Knapsack has an √n lower bound for the parallel time measured by networks. A simply exponential lower bound for the parallel time of quantifier elimination is also shown. Finally, separations among classesP K andNC K are available for fieldsK in the above cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aho, A., Hopcroft, J., Ullman J.: The Design and Analysis of Computer Algorithms. Toronto: Addison-Wesley 1976

    Google Scholar 

  2. Ben-Or, M.: Lower bounds for algebraic computation trees. A.C.M. 15th Symp Theory Comput., pp. 80–86 (1983)

  3. Benedetti, R., Risler, J. J.: Real algebraic and semialgebraic sets. Paris: Hermann 1990

    Google Scholar 

  4. Blum, L., Shub, M., Smale S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Am. Math. Soc.21(1), 1–46 (1989)

    Google Scholar 

  5. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Ergebnisse der Math., 3. Folge, Bd. 12. Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  6. Cucker, F.: “P NC ”. To appear in J. of Complexity

  7. Cucker, F., Montaña, J. L., Pardo, L. M.: Time Bounded Computations over the Reals. To appear in Int. J. Algebra Comp.

  8. Cucker, F., Torrecillas, A.: Two P-complete problems in the theory of the reals. To appear in Proceedings of ICALP '91, Madrid, 1991

  9. Davenport, J. H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb Comput. Soc.5, 29–36, New York: Academic Press 1988

    Google Scholar 

  10. Dobkin, D. P., Lipton, R. J.: A lower bound of 1/2n 2 on linear search programs for solving the Knapsack problem. JCSS18, 86–91 (1976)

    Google Scholar 

  11. Fitchas, N., Galligo, A., Morgenstern, A.: Algorithmes rapides en séquentiel et en parallele pour l'élimination de quantificateurs en géométrie élémentaire. Seminaire de Structures Algebriques Ordennes, Universite de Paris VII, 1987

  12. Von zur Gathen, J.: Parallel arithmetic computations: a survey. Mathematical Foundations on computer Science, 13th Proc. MFCS, 1986

  13. Von zur Gathen, J.: Algebraic Complexity Theory. Technical Report of the Department of Computer Science. University of Toronto, 1988

  14. Grigor'ev, D.: Complexity of deciding Tarski algebra. J. Symb. Comp.5, 65–108 (1988)

    Google Scholar 

  15. Grigorev, D.: Lower bounds in algebraic computational complexity. J. Sov. Math.,4, 1388–1425 (1985)

    Google Scholar 

  16. Heintz, J.: Definability and fast quantifier elimination over algebraically closed fields. Theor. Comp. Sci.24, 239–278 (1983). CORRIGENDUM in Theor. Comp. Science39, 343 (1985)

    Google Scholar 

  17. Heintz, J. Roy, M.-F., Solerno, P.: Sur la Complexité du Principe de Tarski-Seidenberg. Bull. Soc. Math. France118, 101–126 (1990)

    Google Scholar 

  18. Kung, H. T.: New algorithms and lower bounds for the parallel evaluation of certain rational expressions and recurrences. J. ACM23, 534–543 (1976)

    Google Scholar 

  19. Meyer auf der Heide F.: On genuinely time bounded computations. Symp. Theor. Aspects Comp. LNCS349, 1–16, Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  20. Meyer auf der Heide, F.: A Polynomial Linear Search Algorithm for then-dimensional Knapsack Problem. J. ACM,31(3), 668–676 (1984)

    Google Scholar 

  21. Milnor, J.: On the Betti numbers of real algebraic varieties. Proc. AMS15, 275–280 (1964)

    Google Scholar 

  22. Montaña, J. L., Pardo, L. M., Recio, T.: The non-scalar model of complexity in computational geometry. Proc. of MEGA '90, Progress in Math. 94. Basel Birkhäuser, pp. 347–362 (1991)

    Google Scholar 

  23. Montaña, J. L.: Cotas inferiores en teoría de la complejidad algebraica. Doctoral Thesis. Universidad de Cantabria, 1992

  24. Pardo, L. M., Recio, T.: Arboles algebraicos: un modelo de computación en geometria. Contribuciones Cientificas, pp. 241–248, Universidad de Cantabria, 1988

  25. Rabin, M.: Proving simultaneous positivity of linear forms. J. Comp. Syst. Sci.,6, 639–650 (1972)

    Google Scholar 

  26. Smale, S.: On the topology of algorithms, I, J. Complexity,3, 81–89 (1987)

    Google Scholar 

  27. Strassen, V.: Algebraic Complexity Theory. Hand Book of Theoretical Computer Science, capitulo11, 634–671 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the Memory of Mario Raimondo

Partially supported by DGICyT PB 89/0379 and “POSSO”, ESPRIT-BRA 6846

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montaña, J.L., Pardo, L.M. Lower bounds for arithmetic networks. AAECC 4, 1–24 (1993). https://doi.org/10.1007/BF01270397

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01270397

Key words

Navigation