[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Travelling air vortex rings as potential communication signals in a cricket

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

  1. 1.

    Crickets of the non-stridulating speciesPhaeophilacris spectrum (Phalangopsidae) generate travelling air vortex rings, which might serve as a hitherto unknown method of non-acoustic communication involving air particle movements.

  2. 2.

    The males produce a series of forward wing flicks during courtship and single wing flicks during aggressive encounters (Figs. 1, 2). In simulation experiments with moving wing pairs (Fig. 3) travelling vortex rings were visualized by using TiCl4 smoke or tracer particles in the air flow field (Fig. 4).

  3. 3.

    The vortex rings have an initial diameter of about 2 cm, increasing to 5 cm, and travel a maximum distance of 15 cm, depending on wing size and wing flick duration. Both wing size and flick duration determine the Reynolds number (Fig. 6).

  4. 4.

    Generally the velocity of propagation of vortex rings (from an initial velocity of about 40 cm/s) decays exponentially with distance (Fig. 5B).

  5. 5.

    The internal structure of the vortex rings, as visualized with tracer particles (Fig. 8), reveals a typical rotational velocity field. Particle velocities approach 15 cm/s (Fig. 9).

  6. 6.

    The physical basis of vortex ring generation by wing flicks and their possible communication role are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander RD, Otte D (1967) The evolution of genitalia and mating behavior in crickets (Gryllidae) and other Orthoptera. Misc Publ Mus Zool Univ Mich No. 133

  • Bennet-Clark HC (1975) Acoustics and the behaviour ofDrosophilia. Verh Dtsch Zool Ges 1975:18–28

    Google Scholar 

  • Boake CRB (1983) Mating systems and signals in crickets. In: Gwynne DT, Morris GK (eds) Orthopteran mating systems. Westview Press, Boulder, Colorado, pp 28–44

    Google Scholar 

  • Dambach M, Lichtenstein L (1978) Zur Ethologie der afrikanischen GrillePhaeophilacris spectrum Saussure. Z Tierpsychol 46:14–29

    Google Scholar 

  • Heidelbach J (1986) Untersuchungen zum Balzverhalten und zur kommunikativen Bedeutung von Luftwirbelreizen bei der GrillePhaeophilacris spectrum. Universität Köln, Diplomarbeit

  • Kämper G (1978) Untersuchungen zur Kinematik und den funktionsanatomischen Grundlagen zur Flügelschlagaktivität der GrillePhaeophilacris spectrum. Universität Köln, Diplomarbeit

  • Kämper G, Dambach M (1979) Communication by infrasound in a non-stridulating cricket. Naturwissenschaften 66:530

    Google Scholar 

  • Kämper G, Dambach M (1985) Low-frequency airborne vibrations generated by crickets during singing and aggression. J Insect Physiol 31:925–929

    Google Scholar 

  • Kaltenbach A (1983) Vorarbeiten für eine Revision der Phalangopsidae der äthiopischen Faunenregion (Saltatoria-Grylloidea). 2. Revision der ostafrikanischen und nordostafrikanischen Arten der GattungPhaeophilacris Walker. Sitzungsber Österr Akad Wiss 192:267–306

    Google Scholar 

  • Kanou M, Shimozawa T (1984) A threshold analysis of cricket cereal interneurons by an alternating aircurrent stimulus. J Comp Physiol A 154:357–365

    Google Scholar 

  • Kokshaysky NV (1979) Tracing the wake of a flying bird. Nature 279:146–148

    Google Scholar 

  • Kutsch W (1969) Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z Vergl Physiol 63:335–378

    Google Scholar 

  • Lugt HJ (1979) Wirbelströmung in Natur und Technik. G. Braun, Karlsruhe

    Google Scholar 

  • Magarvey RH, MacLatchy CS (1964) The formation and structure of vortex rings. Can J Physics 42:678–683

    Google Scholar 

  • Maxworthy T (1972) The structure and stability of vortex rings. J Fluid Mech 51:15–32

    Google Scholar 

  • Maxworthy T (1977) Some experimental studies of vortex rings. J Fluid Mech 81:465–495

    Google Scholar 

  • Maxworthy T (1979) Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J Fluid Mech 93:47–63

    Google Scholar 

  • Merzkirch W (1974) Flow visualization. Academic Press, New York London

    Google Scholar 

  • Nachtigall W (1967) Aerodynamische Messungen am Tragflügelsystem segelnder Schmetterlinge. J Comp Physiol 54:210–231

    Google Scholar 

  • Nachtigall W (1979) Gleitflug des FlugbeutlersPetaurus breviceps papuanus (Thomas). III. Modellmessungen zum Einfluß des Fellbesatzes auf Umströmung und Luftkrafterzeugung. J Comp Physiol 133:339–349

    Google Scholar 

  • Otte D (1977) Communication in Orthoptera. In: Sebeok TA (ed) How animals communicate. Indiana University Press, Bloomington, pp 334–361

    Google Scholar 

  • Pierce D (1961) Photographic evidence of the formation and growth of vorticity behind plates accelerated from rest in still air. J Fluid Mech 11:460–471

    Google Scholar 

  • Rayner JMV, Jones G, Thomas A (1986) Vortex flow visualizations reveal change in upstroke function with flight speed in bats. Nature 321:162–164

    Google Scholar 

  • Siekmann J (1963) On a pulsating jet from the end of a tube, with application to the propulsion of certain aquatic animals. J Fluid Mech 15:399–418

    Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium — an unorthodox sensory capacity. Naturwissenschaften 66:452–461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinzel, HG., Dambach, M. Travelling air vortex rings as potential communication signals in a cricket. J. Comp. Physiol. 160, 79–88 (1987). https://doi.org/10.1007/BF00613443

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00613443

Keywords

Navigation