[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thermoregulation in the diabetic-obese (db/db) mouse

The role of non-shivering thermogenesis in energy balance

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

  1. 1.

    Thermoregulation and non-shivering thermogenesis have been studied in the genetically diabeticobese (db/db) mouse.

  2. 2.

    At all environmental temperatures between 33 and 10°C the body temperature of the diabetic mice was lower than that of the normal littermates, the difference varying from 1.1°C at 33°C to 4.5°C at 10°C.

  3. 3.

    At 4°C the diabetic mice rapidly died (3.2 h) of hypothermia while the normal mice maintained their body temperature within the normal range.

  4. 4.

    At 23°C the diabetic animals exhibited a diurnal rhythm in body temperature which was similar in both phase and amplitude to the controls, but at every point throughout the 24h cycle the temperature of the mutants was lower by 1–2°C.

  5. 5.

    The resting metabolic rate at thermoneutrality (33°C) was higherper whole animal for the diabetics than for the normals. However, at temperatures below thermoneutrality the converse was observed; between 30 and 4°C the RMR of the mutants was lower than the controls by approximately 25%.

  6. 6.

    The capacity for non-shivering thermogenesis in diabetic mice was only one-half that found in normal animals.

  7. 7.

    The diabetic mouse has abnormalities in thermoregulation and non-shivering thermogenesis which are similar to those found in the genetically obese (ob/ob) mouse.

It is concluded that the high metabolic efficiency of the diabetic mouse, like that of the ob/ob mouse, can be explained by a reduced energy expenditure on thermoregulatory thermogenesis; this may represent a primary mechanism for the operation of the “thrifty genotype” associated with obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R. R., Dade, E., Elliot, J., Hems, D. A.: Hormonal control of intermediary metabolism in obese hyperglycemic mice. II. Level of plasma free fatty acid and immunoreactive insulin and liver glycogen. Diabetes20, 535–541 (1971)

    Google Scholar 

  • Allan, J. A., Yen, T. T.: Lipolytic response of “diabetic” mice (db/db) to isoproterenol and propranolol in vivo. Experientia32, 836–837 (1976)

    Google Scholar 

  • Alonso, L. G., Maren, T. H.: Effect of food restriction on body composition of hereditary obese mice. Am. J. Physiol.183, 284–290 (1955)

    Google Scholar 

  • Bray, G. A., York, D. A.: Genetically transmitted obesity in rodents. Physiol. Rev.51, 598–646 (1971)

    Google Scholar 

  • Bray, G. A., York, D. A., Yukimura, Y.: Activity of (Na++K+)-ATPase in the liver of animals with experimental obesity. Life Sci.22, 1637–1642 (1978)

    Google Scholar 

  • Carnie, J. A., Smith, D. G.: Release of fatty acids from adipose tissue in genetically obese (ob/ob) mice. FEBS Lett.90, 132–134 (1978)

    Google Scholar 

  • Chlouverakis, C.: Induction of obesity in obese-hyperglycaemic mice on normal food intake. Experientia26, 1262–1263 (1970)

    Google Scholar 

  • Coleman, D. L.: Diabetes and obesity: thrifty mutants? Nutr. Rev.36, 129–132 (1978)

    Google Scholar 

  • Coleman, D. L., Hummel, K. P.: Hyperinsulinemia in preweaning diabetes (db) mice. Diabetologia10, 607–610 (1974)

    Google Scholar 

  • Cooper, K. E.: The body temperature “set-point” in fever. In: Essays on temperature regulation (J. Bligh and R. E. Moore, eds.). Amsterdam: North Holland 1972

    Google Scholar 

  • Cox, J. E., Powley, T. L.: Development of obesity in diabetic mice pair-fed with lean siblings. J. Comp. Physiol. Psychol.91, 347–358 (1977)

    Google Scholar 

  • Falconer, D. S., Isaacson, J. H.: Adipose, a new inherited obesity of the mouse. J. Hered.50, 290–292 (1959)

    Google Scholar 

  • Herberg, L., Coleman, D. L.: Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism26, 59–99 (1977)

    Google Scholar 

  • Himms-Hagen, J., Desautels, M.: A mitochondrial defect in brown adipose tissue of the obese (ob/ob) mouse: reduced binding of purine nucleotides and a failure to respond to cold by an increase in binding. Biochem. Biophys. Res. Commun.83, 628–634 (1978)

    Google Scholar 

  • Hummel, K. P., Dickie, M. M., Coleman, D. L.: Diabetes, a new mutation in the mouse. Science153, 1127–1128 (1966)

    Google Scholar 

  • Hummel, K. P., Coleman, D. L. Lane, P. W.: The influence of genetic background on expression of mutations at the diabetes locus in the mouse. 1. C57BL/KsJ and C57BL/6J strains. Biochem. Genet.7, 1–13 (1972)

    Google Scholar 

  • James, W. P. T., Trayhurn, P.: An integrated view of the metabolic and genetic basis of obesity. Lancet1976II, 770–773

  • Jansky, L.: Non-shivering thermogenesis and its thermoregulatory significance. Biol. Rev.48, 85–132 (1973)

    Google Scholar 

  • Le Marchand-Brustel, Y., Jeanrenaud, B.: Pre-and post weanling studies on development of obesity in mdb/mdb mice. Am J. Physiol.234, E568-E574 (1978)

    Google Scholar 

  • Lin, M. H., Romsos, D. R., Akera, T., Leveille, G. A.: Na+, K+-ATPase enzyme units in skeletal muscle from lean and obese mice. Biochem. Biophys. Res. Commun.80, 398–404 (1978)

    Google Scholar 

  • Mitchell, D., Atkins, A. R., Wyndham, C. H.: Mathematical and physical models of thermoregulation. In: Essays on temperature regulation (J. Bligh and R. E. Moore, eds.). Amsterdam: North Holland 1972

    Google Scholar 

  • Neel, J. V.: Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet.14, 353–362 (1962)

    Google Scholar 

  • Stock, M. J.: An automatic, closed-circuit oxygen consumption apparatus for small animals. J. Appl. Physiol.39, 849–850 (1975)

    Google Scholar 

  • Trayhurn, P., James, W. P. T.: Thermoregulation and non-shivering thermogenesis in the genetically obese (ob/ob) mouse. Pflügers Arch.373, 189–193 (1978)

    Google Scholar 

  • Trayhurn, P., Thurlby, P. L., Woodward, C. J. H., James, W. P. T.: Thermoregulation in genetically obese rodents: the relationship to metabolic efficiency. In: Genetic models of obesity in laboratory animals (M. F. W. Festing, ed.). London: Macmillans 1979

    Google Scholar 

  • Yen, T. T., Fuller, R. W., Pearson, D. V.: The response of “obese” (ob/ob) and “diabetic” (db/db) mice to treatments that influence body temperature. Comp. Biochem. Physiol.49A, 377–385 (1974)

    Google Scholar 

  • York, D. A., Bray, G. A., Yukimura, Y.: An enzymatic defect in the obese (ob/ob) mouse: Loss of thyroid induced sodium — and potassium — dependent adenosinetriphosphatase. Proc. Natl. Acad. Sci. USA75, 477–481 (1978)

    Google Scholar 

  • Zucker, L. M.: Efficiency of energy utilization by the Zucker hereditarily obese rat “fatty”. Proc. Soc. Exp. Biol. Med.148, 498–500 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trayhurn, P. Thermoregulation in the diabetic-obese (db/db) mouse. Pflugers Arch. 380, 227–232 (1979). https://doi.org/10.1007/BF00582901

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582901

Key words