[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A justification of the Marguerre-von Kármán equations

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The method of asymptotic expansions, with the thickness as the small parameter, is applied to the general three-dimensional equations for the equilibrium of nonlinearly elastic shells with specific geometries, subjected to suitable loadings and boundary conditions. Then it is shown that the leading term of the expansion is the solution of a system of equations equivalent to those of Marguerre-von Karman (the case of a clamped shell is also considered). In addition, without making any a priori assumption regarding the variation of the unknowns across the thickness of the shell, it is found that the displacement field is of Kirchhoff-Love type, and that the stresses have polynomial variations with respect to the thickness.

This approach clearly delineates the types of three-dimensional loadings, boundary conditions, and “shallowness”, for which a three-dimensional problem may be deemed asymptotically equivalent to a two-dimensional shallow shell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R.A. (1975): Sobolev spaces. New York: Academic Press

    Google Scholar 

  • Antman, S.S. (1976): Ordinary differential equations of nonlinear elasticity, II: Existence and regularity theory for conservative boundary value problems. Arch. Rat. Mech. Anal. 61, 353–393

    Google Scholar 

  • Ball, J.M. (1977): Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337–403

    Google Scholar 

  • Berger, M.S. (1967): On von Kármán's equations und the buckling of a thin elastic plate I. Comm. Pure Appl. Math. 20, 687–718

    Google Scholar 

  • Berger, M.S. (1977): Nonlinearity and functional analysis. New York: Academic Press

    Google Scholar 

  • Berger, M.S.; Fife, P.C. (1968): von Kármán's equations und the buckling of a thin elastic plate, II. Comm. Pure Appl. Math. 21, 227–247

    Google Scholar 

  • Caillerie, D. (1980): The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. in the Appl. Sci. 2, 251–270

    Google Scholar 

  • Ciarlet, P.G. (1980): A justification on the von Karman equations. Arch. Rat. Mech. Anal. 73, 349–389

    Google Scholar 

  • Ciarlet, P.G. (1985): Elasticité tridimensionnelle. Paris: Masson

    Google Scholar 

  • Ciarlet, P.G. (1986): Mathematical elasticity, vol. 1. Amsterdam: North-Holland

    Google Scholar 

  • Ciarlet, P.G.; Destuynder, P. (1979a): A justification of the two-dimensional linear plate model. J. Mecanique 18, 315–344

    Google Scholar 

  • Ciarlet, P. G.; Destuynder, P. (1979b): A justification of a nonlinear model in plate theory. Comp. Methods Appl. Mech. Eng. 17/18, 227–258

    Google Scholar 

  • Ciarlet, P.G.; Kesavan, S. (1980): Two-dimensional approximations of three-dimensional eigenvalues in plate theory. Comput. Methods Appl. Mech. Eng. 26, 149–172

    Google Scholar 

  • Ciarlet, P.G.; Paumier, J.C. (1985): Une justification des équations de Marguerre-von Kármán pour les coques peu profondes. Paris: C.R. Acad. Sci. 301, Sér. 1, 857–860

    Google Scholar 

  • Ciarlet, P.G.; Rabier, P. (1980): Les equations de von Kármán. Lectures notes in mathematics, vol. 826. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Davet, J.L. (1985): Justification de modèles de plaques non linéaires pour des lois de comportement générales. Modélisation et Analyse Numér. (to appear)

  • Deny, J.; Lions, J.-L. (1953): Les espaces du type de Beppo Levi. Ann. Institut Fourier (Grenoble) V, 305–370

    Google Scholar 

  • Destuynder, P. (1980): Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  • Destuynder, P. (1981): Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO Analyse Numér. 15, 331–369

    Google Scholar 

  • Destuynder, P. (1986): Une théorie asymptotique des plaques minces en elasticité linéaire. Paris: Masson

    Google Scholar 

  • Dikmen, M. (1982): Theory of thin elastic shells. Boston: Pitman

    Google Scholar 

  • Germain, P. (1972): Mécanique des milieux continus, Tome 1. Paris: Masson

    Google Scholar 

  • Green, A.E.; Zerna, W. (1968): Theoretical elasticity. University Press, Oxford

    Google Scholar 

  • Gurtin, M.E. (1981): Introduction to continuum mechanics. New York: Academic Press

    Google Scholar 

  • Hanyga, A. (1985): Mathematical theory of non-linear elasticity. Warszawa: Polish Sci. and Chichester: Ellis Horwood

    Google Scholar 

  • von Karman, T.; Tsien, H.S. (1939): The buckling of spherical shells by external pressure. J. Aero. Sci. 7

  • Kesavan, S.; Srikanth, P.N. (1984): On the Dirichlet problem for the Marguerre equations, to appear

  • Koiter, W.T. (1970): On the nonlinear theory of thin elastic shells, Part 111, Proc. Kond. Ned. Akad. Wetensch B69

  • Ladyzhenskaya, O.A. (1969): The mathematical theory of viscous incompressible flows. New York: Gordon & Breach

    Google Scholar 

  • Lions, J.L. (1973): Perturbations singulières dans les problems aux limites et en contrôle optimal. Lecture notes in mathematics, vol. 323. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Marguerre, K. (1938): Zur Theorie der gekrümmten Platte großer Formänderung. In: Proc. of the Fifth Intern. Congr. for Appl. Mech., pp. 93–101

  • Marsden, J.E.; Hughes, T.J.R. (1983): Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall

    Google Scholar 

  • Nečas, J. (1967): Les methodes directes en théorie des equations elliptiques. Paris: Masson

    Google Scholar 

  • Paumier, J.C. (1985): Thesis, Université Pierre et Marie Curie

  • Rao Bo Peng (1986) : (to appear)

  • Raoult, A. (1985): Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation. Annali di Matematica Pura ed Applicata CXXXIX, 361–400

    Google Scholar 

  • Rupprecht, G. (1981): A singular perturbation approach to nonlinear shell theory, Rocky Mountain J. Math. 11, 75–98

    Google Scholar 

  • Schwartz, L. (1967): Cours d'analyse. Paris: Hermann

    Google Scholar 

  • Stoker, J.J. (1968): Nonlinear elasticity. New York: Gordon and Breach

    Google Scholar 

  • Temam, R. (1977): Navier-stokes equations. Amsterdam: North-Holland

    Google Scholar 

  • Truesdell, C.; Noll, W. (1965): The non-linear field theories of mechanics. In: Handbuch der Physik, vol. III/3. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Wang, C.-C.; Truesdell, C. (1973): Introduction to rational elasticity. Groningen: Noordhoff

    Google Scholar 

  • Washizu, K. (1975): Variational methods in elasticity and plasticity, second ed. Oxford: Pergamon

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.N. Atluri, November 18, 1985

Dedicated to Professor Joachim A. Nitsche on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P.G., Paumier, J.C. A justification of the Marguerre-von Kármán equations. Computational Mechanics 1, 177–202 (1986). https://doi.org/10.1007/BF00272623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272623

Keywords

Navigation