Abstract
The method of asymptotic expansions, with the thickness as the small parameter, is applied to the general three-dimensional equations for the equilibrium of nonlinearly elastic shells with specific geometries, subjected to suitable loadings and boundary conditions. Then it is shown that the leading term of the expansion is the solution of a system of equations equivalent to those of Marguerre-von Karman (the case of a clamped shell is also considered). In addition, without making any a priori assumption regarding the variation of the unknowns across the thickness of the shell, it is found that the displacement field is of Kirchhoff-Love type, and that the stresses have polynomial variations with respect to the thickness.
This approach clearly delineates the types of three-dimensional loadings, boundary conditions, and “shallowness”, for which a three-dimensional problem may be deemed asymptotically equivalent to a two-dimensional shallow shell model.
Similar content being viewed by others
References
Adams, R.A. (1975): Sobolev spaces. New York: Academic Press
Antman, S.S. (1976): Ordinary differential equations of nonlinear elasticity, II: Existence and regularity theory for conservative boundary value problems. Arch. Rat. Mech. Anal. 61, 353–393
Ball, J.M. (1977): Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337–403
Berger, M.S. (1967): On von Kármán's equations und the buckling of a thin elastic plate I. Comm. Pure Appl. Math. 20, 687–718
Berger, M.S. (1977): Nonlinearity and functional analysis. New York: Academic Press
Berger, M.S.; Fife, P.C. (1968): von Kármán's equations und the buckling of a thin elastic plate, II. Comm. Pure Appl. Math. 21, 227–247
Caillerie, D. (1980): The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. in the Appl. Sci. 2, 251–270
Ciarlet, P.G. (1980): A justification on the von Karman equations. Arch. Rat. Mech. Anal. 73, 349–389
Ciarlet, P.G. (1985): Elasticité tridimensionnelle. Paris: Masson
Ciarlet, P.G. (1986): Mathematical elasticity, vol. 1. Amsterdam: North-Holland
Ciarlet, P.G.; Destuynder, P. (1979a): A justification of the two-dimensional linear plate model. J. Mecanique 18, 315–344
Ciarlet, P. G.; Destuynder, P. (1979b): A justification of a nonlinear model in plate theory. Comp. Methods Appl. Mech. Eng. 17/18, 227–258
Ciarlet, P.G.; Kesavan, S. (1980): Two-dimensional approximations of three-dimensional eigenvalues in plate theory. Comput. Methods Appl. Mech. Eng. 26, 149–172
Ciarlet, P.G.; Paumier, J.C. (1985): Une justification des équations de Marguerre-von Kármán pour les coques peu profondes. Paris: C.R. Acad. Sci. 301, Sér. 1, 857–860
Ciarlet, P.G.; Rabier, P. (1980): Les equations de von Kármán. Lectures notes in mathematics, vol. 826. Berlin, Heidelberg, New York: Springer
Davet, J.L. (1985): Justification de modèles de plaques non linéaires pour des lois de comportement générales. Modélisation et Analyse Numér. (to appear)
Deny, J.; Lions, J.-L. (1953): Les espaces du type de Beppo Levi. Ann. Institut Fourier (Grenoble) V, 305–370
Destuynder, P. (1980): Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thesis, Université Pierre et Marie Curie, Paris
Destuynder, P. (1981): Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO Analyse Numér. 15, 331–369
Destuynder, P. (1986): Une théorie asymptotique des plaques minces en elasticité linéaire. Paris: Masson
Dikmen, M. (1982): Theory of thin elastic shells. Boston: Pitman
Germain, P. (1972): Mécanique des milieux continus, Tome 1. Paris: Masson
Green, A.E.; Zerna, W. (1968): Theoretical elasticity. University Press, Oxford
Gurtin, M.E. (1981): Introduction to continuum mechanics. New York: Academic Press
Hanyga, A. (1985): Mathematical theory of non-linear elasticity. Warszawa: Polish Sci. and Chichester: Ellis Horwood
von Karman, T.; Tsien, H.S. (1939): The buckling of spherical shells by external pressure. J. Aero. Sci. 7
Kesavan, S.; Srikanth, P.N. (1984): On the Dirichlet problem for the Marguerre equations, to appear
Koiter, W.T. (1970): On the nonlinear theory of thin elastic shells, Part 111, Proc. Kond. Ned. Akad. Wetensch B69
Ladyzhenskaya, O.A. (1969): The mathematical theory of viscous incompressible flows. New York: Gordon & Breach
Lions, J.L. (1973): Perturbations singulières dans les problems aux limites et en contrôle optimal. Lecture notes in mathematics, vol. 323. Berlin, Heidelberg, New York: Springer
Marguerre, K. (1938): Zur Theorie der gekrümmten Platte großer Formänderung. In: Proc. of the Fifth Intern. Congr. for Appl. Mech., pp. 93–101
Marsden, J.E.; Hughes, T.J.R. (1983): Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall
Nečas, J. (1967): Les methodes directes en théorie des equations elliptiques. Paris: Masson
Paumier, J.C. (1985): Thesis, Université Pierre et Marie Curie
Rao Bo Peng (1986) : (to appear)
Raoult, A. (1985): Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation. Annali di Matematica Pura ed Applicata CXXXIX, 361–400
Rupprecht, G. (1981): A singular perturbation approach to nonlinear shell theory, Rocky Mountain J. Math. 11, 75–98
Schwartz, L. (1967): Cours d'analyse. Paris: Hermann
Stoker, J.J. (1968): Nonlinear elasticity. New York: Gordon and Breach
Temam, R. (1977): Navier-stokes equations. Amsterdam: North-Holland
Truesdell, C.; Noll, W. (1965): The non-linear field theories of mechanics. In: Handbuch der Physik, vol. III/3. Berlin, Heidelberg, New York: Springer
Wang, C.-C.; Truesdell, C. (1973): Introduction to rational elasticity. Groningen: Noordhoff
Washizu, K. (1975): Variational methods in elasticity and plasticity, second ed. Oxford: Pergamon
Author information
Authors and Affiliations
Additional information
Communicated by S.N. Atluri, November 18, 1985
Dedicated to Professor Joachim A. Nitsche on the occasion of his sixtieth birthday
Rights and permissions
About this article
Cite this article
Ciarlet, P.G., Paumier, J.C. A justification of the Marguerre-von Kármán equations. Computational Mechanics 1, 177–202 (1986). https://doi.org/10.1007/BF00272623
Issue Date:
DOI: https://doi.org/10.1007/BF00272623