Abstract
There has been much recent interest in Bayesian image analysis, including such topics as removal of blur and noise, detection of object boundaries, classification of textures, and reconstruction of two- or three-dimensional scenes from noisy lower-dimensional views. Perhaps the most straightforward task is that of image restoration, though it is often suggested that this is an area of relatively minor practical importance. The present paper argues the contrary, since many problems in the analysis of spatial data can be interpreted as problems of image restoration. Furthermore, the amounts of data involved allow routine use of computer intensive methods, such as the Gibbs sampler, that are not yet practicable for conventional images. Two examples are given, one in archeology, the other in epidemiology. These are preceded by a partial review of pixel-based Bayesian image analysis.
Similar content being viewed by others
References
Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems (with Discussion), J. Roy. Statist. Soc. Ser. B, 36, 192–236.
Besag, J. E. (1975). Statistical analysis of non-lattice data, The Statistician, 24, 179–195.
Besag, J. E. (1983). Discussion of paper by P. Switzer, Bull. Internat. Statist. Inst., 50 (Bk. 3), 422–425.
Besag, J. E. (1986). On the statistical analysis of dirty pictures (with Discussion), J. Roy. Statist. Soc. Ser. B, 48, 259–302.
Besag, J. E. (1989). Towards Bayesian image analysis, Journal of Applied Statistics, 16, 395–407.
Besag, J. E. and Mollié, A. (1989). Bayesian mapping of mortality rates, Bull. Internat. Statist. Inst., 53 (Bk. 1), 127–128.
Breslow, N. E. (1984). Extra-Poisson variation in log-linear models, J. Roy. Statist. Soc. Ser. C, 33, 38–44.
Buck, C. E., Cavanagh, W. G. and Litton, C. D. (1988). The spatial analysis of soil phosphate data, Tech. Report, Department of Mathematics, University of Nottingham, U.K.
Chow, Y., Grenander, U. and Keenan, D. M. (1988). Hands: a pattern theoretic study of biological shape, Tech. Report, Division of Applied Mathematics, Brown University, Providence, Rhode Island.
Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping, Biometrics, 43, 671–681.
Geman, D. and Geman, S. (1986). Bayesian image analysis, Disorderd Systems and Biological Organization (eds. E. Bienenstock et al.), in NATO ASI Series, Vol. F20, Springer, Berlin.
Geman, D., Geman, S., Graffigne, C. and Ping, Dong (1990). Boundary detection by constrained optimization, I.E.E.E. Transactions: Pattern Analysis and Machine Intelligence, 12, 609–628.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, I.E.E.E. Transactions: Pattern Analysis and Machine Intelligence, 6, 721–741.
Geman, S. and Graffigne, C. (1987). Markov random field image models and their applications to computer vision, Proc. International Congress of Mathematicians (1986) (ed. A. M. Gleason), 1496–1517, Berkeley, California.
Geman, S. and McClure, D. (1987). Statistical methods for tomographic image reconstruction, Bull. Internat. Statist. Inst., 52 (Bk. 4), 5–21.
Green, P. J. (1990). Penalized likelihood reconstructions from emission tomography data using a modified EM algorithm, I.E.E.E. Transactions: Medical Imaging, 9, 84–93.
Greig, D. M., Porteous, B. T. and Seheult, A. H. (1989). Exact maximum a posteriori estimation for binary images, J. Roy. Statist. Soc. Ser. B, 51, 271–279.
Grenander, U. (1983). Tutorial in pattern theory, Tech. Report, Division of Applied Mathematics, Brown University, Providence, Rhode Island.
Kent, J. T. and Mardia, K. V. (1988). Spatial classification using fuzzy membership models, I.E.E.E. Transactions: Pattern Analysis and Machine Intelligence, 10, 659–671.
Künsch, H. R. (1987). Intrinsic autoregressions and related models on the two-dimensional lattice, Biometrika, 74, 517–524.
Mollié, A. (1990). Représentation géographique des taux de mortalité: modélisation spatiale et méthodes Bayésiennes (unpublished Ph. D. thesis).
Owen, A. (1989). Image segmentation via iterated conditional expectations, Tech. Report, Department of Statistics, Stanford University, California.
Author information
Authors and Affiliations
Additional information
An earlier version of this article was presented at the symposium on the Analysis of Statistical Information held in the Institute of Statistical Mathematics, Tokyo during December 5–8, 1989.
This research was carried out partly at the University of Durham, U.K., with the support of an award by the Complex Stochastic Systems Initiative of the Science and Engineering Research Council.
About this article
Cite this article
Besag, J., York, J. & Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43, 1–20 (1991). https://doi.org/10.1007/BF00116466
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00116466