Abstract
The aim of this paper is to extend some fundamental and applied results of the theory of linear recurring sequences over fields to the case of polylinear recurring sequences over rings and modules. Quasi-Frobenius modules and Galois rings play a very special role in this project.
Similar content being viewed by others
References
Ambrosimov, A. S.: On distribution of frequencies of multigrams in linear recurring sequences over residue rings,Uspekhi Mat. Nauk 48(5) (1993), 153–154 (Russian Math. Surveys).
Atiyah, M. F. and McDonald, I. G.:Introduction to Commutative Algebra, Addison-Wesley, Mass., 1969.
Azumaya, G.: A duality theory for injective modules (Theory of quasi-Frobenius modules),Amer. J. Math. 81 (1959), 249–278.
Berlekamp, E. R.:Algebraic Coding Theory, McGraw-Hill, New York, 1968.
Birkhoff, G. and Bartee, T. C.:Modern Applied Algebra, McGraw-Hill, New York, 1970.
Bollman, D.: Some periodicity properties of transformations on vector space over residue class rings,J. Soc. Industr. Appl. 13(3) (1965), 902–912.
Bollman, D.: Some periodicity properties of modules over the ring of polynomials with coefficients in a residue class ring,SIAM J. Appl. Math. 14 (1966), 237–241.
Borevich, Z. I. and Shafarevich, I. R.:Theory of Numbers, 3rd edn, Moscow, 1985.
Brenner, J. L.: Linear recurrence relations,Amer. Math. Monthly 61 (1954), 171–173.
Carmichael, R. D.: On sequences of integers defined by recurrence relations,Quart. J. Pure Appl. Math. 48 (1920), 343–372.
Cerlienco, L. and Piras, F.: On the continuous dual of a polynomial bialgebra,Comm. Algebra 19(10) (1991), 2707–2727.
Chebyshev, P. L.:Theory of Probabilities, Lectures 1879–1880, Moscow, Leningrad, 1936, pp. 139–147.
Chebyshev, P. L.:Congruence Theory, Complete Words, Vol. 1, Acad. Sci. of USSR, Moscow, Leningrad, 1944, pp. 10–172.
Dade, E. C., Robinson, D. W., Taussky, O., and Ward, M.: Divisors of recurrent sequences,J. reine angewandte Math. 214/215 (1964), 180–183.
Dai, Z. and Gollman, D.:Lower Bounds for the Linear Complexity of Sequences over Residue Rings, Lecture Notes in Comput. Sci. 473, Springer-Verlag, New York, 1991.
De, Carli, D. J.: A generalized Fibonacci seguence over an arbitrary ring,Fibonacci Quart. 8 (1970), 182–184, 198.
De, Carli, D. J.: Periodicity over the ring of matrices,Fibonacci Quart. 11(5) (1973), 466–468.
Curtes, Ch. W. and Reiner, I.:Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, London, 1962.
Dickson, L. E.:History of the Theory of Numbers, Vol. 1, Carnegie Institute, Washington, D.C., 1919.
Dornhoff, L. L. and Hohn, F. E.:Applied Modern Algebra, Macmillan, New York, 1978.
Dubois, D.: Modules of sequences of elements of a ring,J. Lond. Math. Soc. 41(1) (1966), 177–180.
Duparc, H. J. A.: Periodicity properties of recurring sequences, I, II,Indag. Math. 16 (1954), 331–342, 473–485.
Eichenauer-Herrman, J., Grothe, H., and Lehn, J.: On the period length of pseudorandom vector-sequences generated by matrix generators,Math. Comput. V. S. 2(185) (1989), 145–148.
Elizarov, V. P.: Systems of linear equations over commutative rings,Uspekhi Mat. Nauk 48(2) (1993), 181–182 (Russian Math. Surveys).
Elizarov, V. P.: General Solution of systems of linear homogeneous equations over commutative ring,Uspekhi Mat. Nauk 49(1) (1994), 141–142 (Russian Math. Surveys).
Engstrom, H. T.: Periodicity in sequences defined by linear recurrence relations,Proc. Nat. Acad. Sci. USA 16 (1930), 663–665.
Engstrom, H. T.: On sequences defined by linear recurrence relations,Trans. Amer. Math. Soc. 33 (1931), 210–218.
Euler, L.: Introduction to calculus of infinitesimal variables (1748),Opera Omnia, Vol. 8 (1922), Vol. 9 (1945).
Faith, C.:Algebra. Algebra II. Ring Theory, Springer-Verlag, New York, 1976.
Gustavson, F. G.: Analysis of the Berlekamp-Massey linear feedback shift register synthesis algorithm,IBM J. Res. Develop. 20 (1976), 204–212.
Gill, A.:Linear Sequential Circuits, McGraw-Hill, New York, 1966.
Hall, M.: An isomorphism between linear recurring sequences and algebraic rings,Trans. Amer. Math. Soc. 44 (1938), 196–218.
Ikai, T., Kosako, H., and Kojima, Y.: Subsequences in linear recurring sequences,Electronics Commun. Japan 53(12) (1970), 159–166.
Imamura, K. and Yoshida, W.: A simple derivation of Berlekamp-Massey algorithm and some applications,IEEE Trans. Inform. Theor. IT-33(1) Jan. 1987.
Jansson, B.:Random Number Generators, Almqvist and Wiksell, Stockholm, 1966.
Kasch, F.:Moduln und Ringe, B. G. Teubner, Stuttgart, 1977.
Klove, Torleiv: Periodicity of recurring sequences in rings,Math. Scand. 32 (1973), 165–168.
Knuth, D. E.:The Art of Computer Programming, Vol. 1. Fundamental Algorithms, Addison-Wesley, New York, 1968.
Kronecker, L.: Forlesungen über Zahlentheorie, 1, Teubner, Leipzig, 1901.
Kurakin, V. L.: Structure of Hopf algebras of linear recurring sequences,Uspekhi Mat. Nauk 48(5) (1993), 177–178 (Russian Math. Surveys).
Kurakin, V. L.: Representations over a field of a linear recurrence of maximal period over a residue ring,Uspekhi Mat. Nauk 49(2) (1994), 157–158 (Russian Math. Surveys).
Kurakin, V. L.: Representations over rhe ringsZ p n of a linear recurring sequences of maximal period over the field GF(p),Discrete Mat. USSR 4(4) (1992), 96–116 (Discrete Math. Appl.).
Kurakin, V. L.: Representations of linear recurring sequences and regular prime numbers,Uspekhi Mat. Nauk 47(6) (1992), 215–216 (Russian Math. Surveys).
Kurakin, V. L.: Convolution of linear recurring sequences,Uspekhi Mat. Nauk 48(4) (1993), 235–238 (Russian Math. Surveys).
Kurakin, V. L.: Analytical structure of linear recurring sequences,Fundamentalnaja i Prikladnaja Matematika (in Russian)1(2) (1995), to appear.
Kurakin, V. L.: The first coordinate sequence of a linear recurring sequence of maximal period over Galois ring,Discrete Mat. Russia 6(12) (1994), 88–100 (Discrete Math. Appl.).
Kuzmin, A. S.:Polynomials of Maximal Period over Residue Rings, 3rd International Conference in Algebra, Krasnojarsk, 1993.
Kuzmin, A. S.: The distribution of elements on cycles of linear recurring sequences over residue rings,Uspekhi Mat. Nauk 47(5) (1992), 213–214 (Russian Math. Surveys).
Kuzmin, A. S.: Lower bounds of ranks for coordinate sequences over residue rings,Uspekhi Mat. Nauk 48(3) (1993), 193–194 (Russian Math. Surveys).
Kuzmin, A. S. and Nechaev, A. A.: Distribution of elements in linear recurrences of maximal period over ℤp 2,Proc. IV Internat. Workshop, Algebra and Combinator. Coding Theory, Novgorod, 1994, pp. 132–136.
Kuzmin, A. S. and Nechaev, A. A.: Linear recurrent sequences over Galois rings,Uspekhi Mat. Nauk 48(1) (1993), 167–168 (Russian Math. Surveys).
Kuzmin, A. S. and Nechaev, A. A.: A construction of noise stable codes using linear recurrents over Galois rings,Uspekhi Mat. Nauk 47(5) (287), (1992), 183–184 (Russian Math. Surveys).
Kuzmin, A. S. and Nechaev A. A.: Linear recurrents over Galois rings,Proc. 2nd Internat. Conf. on Algebra, Barnaul, 1991.
Lagrange, J.-L.: Sur l' integration d' une éqution differentielle a différences finies, qui contient la théorie des suites récurrentes,Misc. Taurinensia 1 (1759); Oeuvres, vol. 1, 93–96, Gauthier-Villars, Paris, 1867.
Lagrange, J.-L.: Recherches sur les suites récurrentes dont les termes varient de plusieurs manières différentes, ou sur l'integration des équations linéaires aur différences finies et partielles; et sur l'usage de ces équations dans la théorie des hasards,Nov. Mémoires Acad., Roy. Berlin 1775, 183–272; Oeuvres, vol. 4, 151–251, Gauthier-Villars, Paris, 1869.
Laksov, D.: Linear recurring sequences over finite fields,Math. Scand. 16 (1965), 181–196.
Lidl, R. and Niederreiter, H.:Introduction to Finite Fields and Their Applications, Cambridge Univ. Press. 1986.
Lidl, R. and Niederreiter, H.:Finite Fields, Addison-Wesley, London, 1983.
Lucas, E.: Theorie des fonctions numeriques simplement periodiques,Amer. J. Math. 1 (1878), 184–240, 289–321.
Magidin, M. and Gill, A.: Singular shift register over residue class ring,Math. Syst. Theory 9(4) (1976), 345–358.
Markov, A. A.:Finite Difference Calculates, 2 edn, Odessa, 1910, pp. 209–239.
Massey, J. L.: Shift-register synthesis and BCH decoding,IEEE Trans. Inform. Theory 15 (1969), 122–127.
McDonald, B. R.:Finite Rings with Identity, McGraw-Hill, New York, 1974.
McEliece, R. J.:Finite Fields for Computer Scientists and Engineers, Kluwer Acad. Publ., Dordrecht, 1987.
McWilliams, F. J. and Sloane, N. J. A.: Pseudo-random sequences and arrays,Proc. IEEE 64(11) (1976), 1715–1729.
Mendelsohn, N. S.: Congruence relationship for integral recurrences,Canad. Math. Bull. 5 (1962), 281–284.
Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition,Sci. Rpts Toky Kyoika Daigaku 6 (1958), 83–142.
Nagata, M.:Local Rings, Int. Publ., New York, 1962.
Nathanson, M. B.: Difference operators and periodic sequences over finite modules,Acta Math. Acad. Sci. Hungar. 28 (1976), 219–224.
Nechaev, A. A.: Finite principal ideals rings,Mat. Sb. 91(3) (1973), 350–366 (English translation:Math. USSR Sb. 20(3) (1974), 364–382).
Nechaev, A. A.: Criteria of completeness of system of functions over finite rings and quasi-Frobenius rings,Mat. Sb. 23(3) (1982), 175–187 (Math. USSR Sb.).
Nechaev, A. A.: Trace-function in Galois rings and noise stable codes, inProc. 5th All-Union Symp. of Theory of Ring Algebra and Modules, Novosibirsk, 1982, p. 97.
Nechaev, A. A.: Similarity of matrices over local commutative Artinian rings,Trudy Sem. Petrovsk. 9 (1983), 81–101 (J. Soviet Math.).
Nechaev, A. A.: Kerdook code in a cyclic form,Discrete Math. Appl. 1(4) (1991), 365–384.
Nechaev, A. A.: Linear recurring sequences over commutative rings,Discrete Math. Appl. 2(6) (1992), 659–683.
Nechaev, A. A.: Linear recurring sequences and quasi-Frobenius modules, inProc. International School in Algebra and Analysis, Baikal, 1992.
Nechaev, A. A.: The cyclic types of linear substitutions over finite commutative rings,Mat. Sb. 184(3) 21–56 (Math. USSR Sb.).
Nechaev, A. A.: Linear recurring sequences over quasi-Frobenius modules,Uspekhi Mat. Nauk 48(3) (1993), 197–198 (Russian Math. Surveys).
Nechaev, V. I.: Groups of nonsingular matrices over finite fields and recurring sequences,Dokl. Akad. Nauk. SSSR 152(2) (1963), 275–277 (Soviet Math. Dokl.).
Nechaev, V. I.: Linear recurring congruences with periodic coefficients,Mat. Zametki 3(6) (1968), 625–632 (Math. Notes).
Nechaev, V. I.: Recurring sequences,Uchen. Zap. Mosk. Ped. Inst. 375 (1971), 103–123 (in Russian).
Nechaev, V. I.: Linear congruences on power of a prime ideal and linear recurring sequences,Uchen. Zap. Mosk. Ped. Inst. 375 (1971), 124–135 (in Russian).
Nechaev, V. I. and Polosuev, A. M.: On distribution of non-residues and primitive roots in a sequence satisfying a finite difference equation with polynominal coefficients,Moscow Univ. Math. Publ., Vol. 1,6 (1964), 75–84.
Nechaev, V. I. and Stepanova, L. L.: Distribution of non-residues and primitive roofs in recurring sequences over algebraic number field,Uspekhi Mat. Nauk 20(3) (1965), 197–203 (Russian Math. Surveys).
Niederreiter, H.: On the cycle structure of linear recurring sequences,Math. Scand. 38 (1976), 53–77.
Niederreiter, H.: A simple and general approach to the decimation of feedback shift-register sequence,Probl. Control Informat. Theory 17(3) (1988), 327–331.
Niederreiter, H.: Some new cryptosystems based on feedback register sequence,Math. J. Okayama Univ. 30 (1988), 121–149.
Nomura, T. and Fukuda, A.: Linear recurring planes and two-dimensional cyclic codes,Electronics Commun. Japan 54(3) (1971), 23–30.
Nomura, T., Miyakawa, H., Imai, H. and Fukuda, A.: A method of construction and some properties of planes having maximum area matrix,Electronics Commun. Japan 54(5) (1971), 18–25.
Nomura, T., Miyakawa, H., Imai, H. and Fukuda, A.: Some properities of the plane and its extension to three-dimensional space,Electronics Commun. Japan 54(8) (1971), 27–34.
Nomura, T., Miyakawa, H., Imai, H. and Fukuda, A.: A theory of two-dimensional linear recurring arrays,IEEE Trans. Inform. Theory IT- 18 (1972), 775–785.
Robinson, D. W.: A note on linear recurrent sequences modulom,Amer. Math. Monthly 73 (1966), 619–621.
Robinson, D. W.: The rank and period of a linear recurrent sequence over a ring,Fibonacci Quart. 14 (1976), 210–214.
Sakata, S.: Doubly linear recurring arrays andM-arrays,Trans. Inst. Electron. Comm. Eng. A 60(10) (1977), 918–925.
Sakata, S.: General theory of doubly periodic arrays over an arbitrary finite field and its applications,IEEE Trans. Inform. Theory IT- 24 (1978), 719–730.
Sakata, S.: On determining the independent point set for doubly periodic arrays and encoding two-dimensional cyclic codes and their duals,IEEE Trans. Inform. Theory IT- 27 (1981), 556–565.
Sakata, S.: Finding a minimal sef of the recurring relations capable of generating a given finite two-dimensional array,J. Symbolic Comput. 34(3) (1982), 321–337.
Sakata, S.:Synthesis of Two-Dimensional Linear Feedback Shift-Registers and Groebner Basis, Lecture Notes in Comput. Sci. 356, Springer-Verlag, Berlin, 1989.
Shiue, J. S. and Sheu, T. L.: On the periodicity of linear recurrence of second order in commutative rings,Tamkang J. Math. 4 (1973), 105–107.
Sidelnikov, V. M.: Bounds for number of symbols on a segment of a recurring sequence over a finite field,Discrete Mat.,3(2) (1991), 87–95 (Discrete Math. Appl.).
Sidelnikov, V. M.: Distribution of non residues and primitive roots in recurring sequences,Mat. Zametki 24(5) (1987), 605–615 (Math. Notes).
Suprunenko, D. A.:Matrix Groups, Nauka, Moscow, 1972.
Uzkow, A. I.: Zur ideal theorie der Kommtativen Ring. I,Mat. Sb. 5(3) (1939), 513–520 (Math. USSR Sb.).
Uzkow, A. I.: An abstract foundation of Brandt's theory of Ideals,Mat. Sb. 6(2) (1939), 253–291 (Math. USSR Sb.).
Uzkow, A. I.: One algebraic lemma and normalizing E. Neother theorem,Mat. Sb. 22(2) (1948), 349–350 (Math. USSR Sb.).
Uzkow, A. I.: On cyclic direct decompsibility of modules over commutative rings,Mat. Sb. 62(4) (1963), 468–475 (Math. USSR Sb.).
Vince, A.: Period of a linear recurrence,Acta Arith. 39 (1981), 303–311.
Ward, M.: The arithmetical theory of linear recurring series,Trans. Amer. Math. Soc. 35 (1933), 600–628.
Ward, M.: Arithmetical properties of sequences in rings,Ann. of Math. 39(2) (1938), 210–219.
Webb, W. A. and Long, C. T.: Distribution modulo p of the general linear second order recurrence,Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58(8) (1975), 92–100.
Wisbauer, R.: Grundlagen der Modul- und Ringtheorie,Verl. Reinhard Fischer, Munich, 1988.
Zierler, N.: Linear recurring sequences,J. Soc. Indust. Appl. Math. 7 (1959), 31–48.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mikhalev, A.V., Nechaev, A.A. Linear recurring sequences over modules. Acta Appl Math 42, 161–202 (1996). https://doi.org/10.1007/BF00047168
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00047168