[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lifting Temporal Proofs through Abstractions

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2575))

Abstract

Model checking is often performed by checking a transformed property on a suitable finite-state abstraction of the source program. Examples include abstractions resulting from symmetry reduction, data independence, and predicate abstraction. The two programs are linked by a structural relationship, such as simulation or bisimulation, guaranteeing that if the transformed property holds on the abstract program, the property holds on the original program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized verification with automatically computed inductive assertions. In CAV, volume 2102 of LNCS, 2001.

    Google Scholar 

  2. M. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in propositional temporal logic. Theoretical Computer Science, 59, 1988.

    Google Scholar 

  3. E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In Workshop on Logics of Programs, volume 131 of LNCS. Springer-Verlag, 1981.

    Google Scholar 

  4. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model checking. In CAV, volume 697 of LNCS, 1993.

    Google Scholar 

  5. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Springer Verlag, 1990.

    Google Scholar 

  6. E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended abstract). In FOCS, 1991.

    Google Scholar 

  7. E.A. and C-L. Lei. Efficient model checking in fragments of the propositional mu-calculus (extended abstract). In LICS, 1986.

    Google Scholar 

  8. E. A. Emerson and A. P. Sistla. Symmetry and model checking. In CAV, volume 697 of LNCS, 1993.

    Google Scholar 

  9. S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In CAV, volume 1254 of LNCS, 1997.

    Google Scholar 

  10. R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. In CAV, volume 1102 of LNCS, 1996.

    Google Scholar 

  11. T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer. Temporal-safety proofs for systems code. In CAV, volume 2404 of LNCS, 2002.

    Google Scholar 

  12. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: a foundation for three-valued program analysis. In ESOP, number 2028 in LNCS, 2001.

    Google Scholar 

  13. M. Hennessy and R. Milner. Algebriac laws for nondeterminism and concurrency. J.ACM, 1985.

    Google Scholar 

  14. D. Janin and I. Walukiewicz. Automata for the modal mu-calulus and related results. In MFCS, volume 969 of LNCS, 1995.

    Google Scholar 

  15. R.M. Keller. Formal verification of parallel programs. CACM, 1976.

    Google Scholar 

  16. D. Kozen. Results on the propositional mu-calculus. In ICALP, volume 140 of LNCS, 1982.

    Google Scholar 

  17. Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Information and Computation, 163(1), 2000.

    Google Scholar 

  18. K.G. Larsen and B. Thomsen. A modal process logic. In LICS, 1988.

    Google Scholar 

  19. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

    Google Scholar 

  20. E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall (4th Edition), 1997.

    Google Scholar 

  21. R. Milner. An algebraic definition of simulation between programs. In 2nd IJCAI, 1971.

    Google Scholar 

  22. K. S. Namjoshi. Certifying model checkers. In CAV, volume 2102 of LNCS, 2001.

    Google Scholar 

  23. G.C. Necula and P. Lee. Safe kernel extensions without run-time checking. In OSDI, 1996.

    Google Scholar 

  24. D. Park. Concurrency and automata on infinite sequences, volume 154 of LNCS. Springer Verlag, 1981.

    Google Scholar 

  25. D. Peled, A. Pnueli, and L. D. Zuck. From falsification to verification. In FSTTCS, volume 2245 of LNCS, 2001.

    Google Scholar 

  26. W. Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. CACM, 35(8), 1992. web page: http://www.cs.umd.edu/projects/omega/omega.html.

  27. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In Proc. of the 5th International Symposium on Programming, volume 137 of LNCS, 1982.

    Google Scholar 

  28. A. Roychoudhury, C.R. Ramakrishnan, and I.V. Ramakrishnan. Justifying proofs using memo tables. In PPDP, 2000.

    Google Scholar 

  29. R. Sekar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Model-carrying code (MCC): A new paradigm for mobile-code security. In New Security Paradigms Workshop, 2002.

    Google Scholar 

  30. C. Stirling. Modal and temporal logics for processes. In Ban. Higher Order Workshop, volume 1043 of LNCS. Springer Verlag, 1995.

    Google Scholar 

  31. L. Tan and R. Cleaveland. Evidence-based model checking. In CAV, volume 2404 of LNCS, 2002.

    Google Scholar 

  32. P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In POPL, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Namjoshi, K.S. (2003). Lifting Temporal Proofs through Abstractions. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2003. Lecture Notes in Computer Science, vol 2575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36384-X_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-36384-X_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00348-9

  • Online ISBN: 978-3-540-36384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics