[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Double Residuated Lattices and Their Applications

  • Conference paper
  • First Online:
Relational Methods in Computer Science (RelMiCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2561))

Included in the following conference series:

Abstract

In this paper we introduce a new class of double residuated lattices. Basic properties of these algebras are given. Taking double residuated lattices as a basis, we propose a fuzzy generalisation of information relations. We also define several fuzzy information operators and show that some classes of information relations can be characterised by means of these operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Allwein and M. Dunn (1993). “Kripke models for linear logic”. Journal of Symbolic Logic58, No 2, pp. 514–545.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ph. Balbiani and E. Orłowska (1999). “A hierarchy of modal logics with relative accessibility relations”. Journal of Applied Non-Classical Logics 9, No 2-3, pp. 303–328, special issue in the memory of George Gargov.

    MATH  MathSciNet  Google Scholar 

  3. K. Blount and C. Tsinakis (2001). “The structure of residuated lattices”. Preprint.

    Google Scholar 

  4. L. Farinas del Cerro and H. Prade (1986) “Rough sets, fuzzy sets and modal logic”. Fuzziness in indiscernibility and partial information. In: A. Di Nola and A. G. Ventre (eds), The Mathematics of Fuzzy Systems, Verlag TÜV Rheinland.

    Google Scholar 

  5. C. C. Chang (1958) “Algebraic analysis of many-valued logics”. Transactions of the American Mathematical Society 88, pp. 467–490.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Demri, E Orłowska and D. Vakarelov (1999). “Indiscernibility and complementarity relations in information systems”. In: J. Gerbrandy, M. Marx, M. de Rijke and Y. Venema (eds) JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press.

    Google Scholar 

  7. S. Demri and E Orłowska (2002). Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science, Springer, forthcoming.

    Google Scholar 

  8. R. P. Dilworth and N. Ward (1939) “Residuated lattices”. Transactions of the American Mathematical Society 45, pp. 335–354.

    Article  MATH  MathSciNet  Google Scholar 

  9. I. Düntsch and E. Orłowska (2000). “Logics of complementarity in information systems”. Mathematical Logic Quarterly 46, pp. 267–288.

    Article  MATH  Google Scholar 

  10. I. Düntsch and E. Orłowska (2000). “Beyond modalities: suficiency and mixed algebras”. In: E. Orłowska and A. Szałas (eds) Relational Methods for Computer Science Applications, Physica Verlag, Heidelberg, pp. 263–285.

    Google Scholar 

  11. I. Düntsch and E. Orłowska (2001). “Algebraic structures for qualitative reasoning”. Alfred Tarski Centenary Conference, Warsaw, Poland.

    Google Scholar 

  12. F. Esteva and L. Godo (2001) “Monoidal t-norm based logic: towards a logic for left-continuous t-norms”. Fuzzy Sets and Systems 124, pp. 271–288.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Esteva and L. Godo (2001). “On complete residuated many-valued logics with tnorm conjunction”. Proceedings of the 31st International Symposium on Multiple-Valued Logic, Warsaw, Poland, pp. 81–86.

    Google Scholar 

  14. P. Flondor, G. Georgescu, and A. Iorgulecu (2001). “Psedo-t-norms and pseudo-BL algebras”. Soft Computing 5, No 5, pp. 355–371.

    Article  MATH  Google Scholar 

  15. S. Gottwald (2001). A Treatise on Many-Valued Logics, Studies in Logic and Computation 9, Research Studies Press: Baldock, Hertfordshire, England.

    Google Scholar 

  16. J. A. Gougen (1967). “L-fuzzy sets”. Journal of Mathematical Analysis and Applications 18, pp. 145–174.

    Article  MathSciNet  Google Scholar 

  17. P. Hajek (1998). Metamathematics of Fuzzy Logic, Kluwer, Dordrecht.

    Google Scholar 

  18. J. B. Hart, L. Rafter, and C. Tsinakis (2001). “The structure of commutative residuated lattices”. Preprint.

    Google Scholar 

  19. C. A. R. Hoare and H. Jifeng (1986). “The weakest prespecification”. Part I: Fundamenta Informaticae IX, pp. 51–84. Part II: Fundamenta Informaticae IX, pp. 217-252.

    Google Scholar 

  20. U. Höhle and U.P. Klement (eds) (1996). Non-Classical Logics and their Applications to Fuzzy Subsets, Kluwer, Dordrecht.

    Google Scholar 

  21. U. Höhle (1996). “Commutative, residuated l-monoids”. In [20], pp. 53–106.

    Google Scholar 

  22. I. Humberstone (1983). “Inaccessible words”. Notre Dame Journal of Formal Logic 24, pp. 346–352.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Jipsen (2001). “A Gentzen system and decidability for residuated lattices”. Preprint.

    Google Scholar 

  24. B. Konikowska (1997). “ogic for reasoning about relative similarity” Studia Logica 58, pp. 185–226.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. K. Meyer and R. Routley (1972). “Algebraic analysis of entailment”, Logique et analyse 15, pp. 6.

    Google Scholar 

  26. E. Orłowska (1988). “Kripke models with relative accessibility and their application to inferences from incomplete information”. In: Mirkowska, G. and Rasiowa, H. (eds), Mathematical Problems in Computation Theory. Banach Center Publications 21, pp. 329–339.

    Google Scholar 

  27. E. Orłowska (ed) (1998). Incomplete Information — Rough Set Analysis, Studies in Fuzziness and Soft Computing, Springer-Verlag.

    Google Scholar 

  28. E. Orłowska (1999). “Many-valuedness and uncertainty”. Multiple-Valued Logic 4, pp. 207–227.

    MATH  MathSciNet  Google Scholar 

  29. E. Orłowska and A. M. Radzikowska (2001). “Information relations and operators based on double residuated lattices”. In H. de Swart (ed), Proceedings of the 6th Seminar on Relational Methods in Computer Science RelMiCS’2001, pp. 185–199.

    Google Scholar 

  30. A. M. Radzikowska and E. E. Kerre (2002) “A comparative study of fuzzy rough sets”. Fuzzy Sets and Systems 126 No 2, pp. 137–155.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. M. Radzikowska, E. E. Kerre (2002) “A general calculus of fuzzy rough sets”. Submitted.

    Google Scholar 

  32. A. M. Radzikowska and E. E. Kerre (2001). “On some classes of fuzzy information relations”. Proceedings of the 31st International Symposium on Multiple-Valued Logic, Warsaw, Poland, pp. 75–80.

    Google Scholar 

  33. A. M. Radzikowska and E. E. Kerre (2001) “Towards studying of fuzzy information relations”. To appear in Proceedings of EUSFLAT-2001, Leicester, UK.

    Google Scholar 

  34. H. Rasiowa and R. Sikorski (1970). The Mathematics of Metamathematics, Warszawa.

    Google Scholar 

  35. C. Rauszer (1974). “Semi-Boolean algebras and their applications to intuitionistic logic with dual operations”. Fundamenta Mathematicae 83, pp. 219–249.

    MATH  MathSciNet  Google Scholar 

  36. B. Schweizer and A. Sklar (1983). Probabilistic Metric Spaces. North Holland, Amsterdam.

    Google Scholar 

  37. E. Turunen (1999) Mathematics Behind Fuzzy Logic, Springer-Verlag.

    Google Scholar 

  38. D. Vakarelov (1998). “Information systems, similarity relations and modal logics”. In [27], pp. 492–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orłowska, E., Radzikowska, A.M. (2002). Double Residuated Lattices and Their Applications. In: de Swart, H.C.M. (eds) Relational Methods in Computer Science. RelMiCS 2001. Lecture Notes in Computer Science, vol 2561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36280-0_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36280-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00315-1

  • Online ISBN: 978-3-540-36280-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics