Abstract
The thin plate spline (TPS) is an effective tool for modeling coordinate transformations that has been applied successfully in several computer vision applications. Unfortunately the solution requires the inversion of a p × p matrix, where p is the number of points in the data set, thus making it impractical for large scale applications. As it turns out, a surprisingly good approximate solution is often possible using only a small subset of corresponding points. We begin by discussing the obvious approach of using the subsampled set to estimate a transformation that is then applied to all the points, and we show the drawbacks of this method. We then proceed to borrow a technique from the machine learning community for function approximation using radial basis functions (RBFs) and adapt it to the task at hand. Using this method, we demonstrate a significant improvement over the naive method. One drawback of this method, however, is that is does not allow for principal warp analysis, a technique for studying shape deformations introduced by Bookstein based on the eigenvectors of the p × p bending energy matrix. To address this, we describe a third approximation method based on a classic matrix completion technique that allows for principal warp analysis as a by-product. By means of experiments on real and synthetic data, we demonstrate the pros and cons of these different approximations so as to allow the reader to make an informed decision suited to his or her application.
Chapter PDF
Similar content being viewed by others
References
C. T. H. Baker. The numerical treatment of integral equations. Oxford: Clarendon Press, 1977.
S. Belongie, J. Malik, and J. Puzicha. Matching shapes. In Proc. 8th Int’l. Conf. Computer Vision, volume 1, pages 454–461, July 2001.
F. L. Bookstein. Principal warps: thin-plate splines and decomposition of deformations. IEEE Trans. Pattern Analysis and Machine Intelligence, 11(6):567–585, June 1989.
H. Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In Proc. IEEE Conf. Comput. Vision and Pattern Recognition, pages 44–51, June 2000.
M.H. Davis, A. Khotanzad, D. Flamig, and S. Harms. A physics-based coordinate transformation for 3-d image matching. IEEE Trans. Medical Imaging, 16(3):317–328, June 1997.
F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7(2):219–269, 1995.
M. J. D. Powell. A thin plate spline method for mapping curves into curves in two dimensions. In Computational Techniques and Applications (CTAC95), Melbourne, Australia, 1995.
A.J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In ICML, 2000.
G. Wahba. Spline Models for Observational Data. SIAM, 1990.
Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In Proc. IEEE Conf. Comput. Vision and Pattern Recognition, pages 520–526, 1997.
C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference, pages 682–688, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Donato, G., Belongie, S. (2002). Approximate Thin Plate Spline Mappings. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds) Computer Vision — ECCV 2002. ECCV 2002. Lecture Notes in Computer Science, vol 2352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47977-5_2
Download citation
DOI: https://doi.org/10.1007/3-540-47977-5_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43746-8
Online ISBN: 978-3-540-47977-2
eBook Packages: Springer Book Archive