[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

S-CREAM — Semi-automatic CREAtion of Metadata

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web (EKAW 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2473))

Abstract

Richly interlinked, machine-understandable data constitute the basis for the Semantic Web. We provide a framework, S-CREAM, that allows for creation of metadata and is trainable for a specific domain. Annotating web documents is one of the major techniques for creating metadata on the web. The implementation of S-CREAM, OntoMat-Annotizer supports now the semi-automatic annotation of web pages. This semi-automatic annotation is based on the information extraction component Amilcare. OntoMat-Annotizer extract with the help of Amil-care knowledge structure from web pages through the use of knowledge extraction rules. These rules are the result of a learning-cycle based on already annotated pages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fabio Ciravegna. Adaptive Information Extraction from Text by Rule Induction and Generalisation. In Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI)e, Seattle, Usa, August 2001.

    Google Scholar 

  2. Fabio Ciravegna. Challenges in Information Extraction from Text for Knowledge Management. IEEE Intelligent Systems and Their Applications, 16(6):88–90, 2001.

    Google Scholar 

  3. Fabio Ciravegna. (LP)2, an Adaptive Algorithm for Information Extraction from Web-related Texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and Mining held in conjunction with 17th International Joint Conference on Artificial Intelligence (IJCAI), Seattle, Usa, August 2001.

    Google Scholar 

  4. Fabio Ciravegna and Daniela Petrelli. User Involvement in Adaptive Information Extraction: Position Paper. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and Mining held in conjunction with 17th International Joint Conference on Artificial Intelligence (IJCAI), Seattle, Usa, August 2001.

    Google Scholar 

  5. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information. In R. Meersman et al., editors, Database Semantics: Semantic Issues in Multimedia Systems, pages 351–369. Kluwer Academic Publisher, 1999.

    Google Scholar 

  6. L. Denoue and L. Vignollet. An annotation tool for Web browsers and its applications to information retrieval. In In Proceedings of RIAO2000, Paris, April 2000. http://www.univ-savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

  7. Aaron Douthat. The message understanding conference scoring software user’s manual. In 7th Message Understanding Conference Proceedings, MUC-7, 1998. http://www.itl.nist.gov/iaui/894.02/relatedprojects/muc/.

  8. M. Erdmann, A. Maedche, H.-P. Schnurr, and Steffen Staab. From Manual to Semi-automatic Semantic Annotation: About Ontology-based Text Annotation Tools. In P. Buitelaar & K. Hasida (eds). Proceedings of the COLING 2000 Workshop on Semantic Annotation and Intelligent Content, Luxembourg, August 2000.

    Google Scholar 

  9. H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen. Automatic generation of ontology editors. In Proceedings of the 12th Banff Knowledge Acquisition Workshop, Banff, Alberta, Canada, 1999.

    Google Scholar 

  10. D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, S. Staab, R. Studer, and Andreas Witt. On2broker: Semantic-based access to information sources at the WWW. In In Proceedings of the World Conference on the WWW and Internet (WebNet 99), Honolulu, Hawaii, USA, 1999.

    Google Scholar 

  11. Reference description of the DAML+OIL (March 2001) ontology markup language, March 2001. http://www.daml.org/2001/03/reference.html.

  12. B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of discourse. Computational Linguistics, 12(3):175204, 1986.

    Google Scholar 

  13. T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 6(2):199–221, 1993.

    Article  Google Scholar 

  14. S. Handschuh, S. Staab, and A. Maedche. CREAM — Creating relational meta-data with a component-based, ontology driven framework. In In Proceedings of K-Cap 2001, Victoria, BC, Canada, October 2001.

    Google Scholar 

  15. Siegfried Handschuh and Steffen Staab. Authoring and Annotation of Web Pages in CREAM. In Proceeding of the WWW2002-Eleventh International World Wide Web Conferenceb (to appear), Hawaii, USA, May 2002.

    Google Scholar 

  16. J. Heflin and J. Hendler. Searching the Web with SHOE. In Artificial Intelligence for Web Search. Papers from the AAAI Workshop. WS-00-01, pages 35–40. AAAI Press, 2000.

    Google Scholar 

  17. J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An Open RDF Infrastructure for Shared Web Annotations. In Proc. of the WWW 10 International Conference. Hong Kong, 2001.

    Google Scholar 

  18. Nicholas Kushmerick. Wrapper induction for information extraction. In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI), 1997.

    Google Scholar 

  19. S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web Agents. In Proceedings of First International Conference on Autonomous Agents, 1997.

    Google Scholar 

  20. P. Martin and P. Eklund. Embedding Knowledge in Web Documents. In Proceedings of the 8th Int. World Wide Web Conf. (WWW’8), Toronto, May 1999, pages 1403–1419. Elsevier Science B.V., 1999.

    Google Scholar 

  21. Diana Maynard, Valentin Tablan, Hamish Cunningham, Cristian Ursu, Horacio Saggion, Kalina Bontcheva, and Yorick Wilks. Architectural Elements of Language Engineering Robustness. Journal of Natural Language Engineering-Special Issue on Robust Methods in Analysis of Natural Language Data, 2002. forthcoming.

    Google Scholar 

  22. R.S. Mickalski, I. Mozetic, J. Hong, and H. Lavrack. The multi purpose incremental learning system AQ15 and its testing application to three medical domains. In Proceedings of the 5th National Conference on Artificial Intelligence, Philadelphia, USA, 1986.

    Google Scholar 

  23. M. Strube and U. Hahn. Functional Centering — Grounding Referential Coherence in Information Structure. Computational Linguistics, 25(3):309–344, 1999.

    Google Scholar 

  24. M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and M. Lanzoni. Knowledge Extraction by using an Ontology-based Annotation Tool. In K-CAP 2001 workshop on Knowledge Markup and Semantic Annotation, Victoria, BC, Canada, October 2001.

    Google Scholar 

  25. Ka-Ping Yee. CritLink: Better Hyperlinks for the WWW, 1998. http://crit.org/~ping/ht98.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Handschuh, S., Staab, S., Ciravegna, F. (2002). S-CREAM — Semi-automatic CREAtion of Metadata. In: Gómez-Pérez, A., Benjamins, V.R. (eds) Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web. EKAW 2002. Lecture Notes in Computer Science(), vol 2473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45810-7_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-45810-7_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44268-4

  • Online ISBN: 978-3-540-45810-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics