Abstract
We describe an algorithm for deciding the first-order multisorted theory BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger arithmetic operations (PA). BAPA can express the relationship between integer variables and cardinalities of a priory unbounded finite sets, and supports arbitrary quantification over sets and integers.
Our motivation for BAPA is deciding verification conditions that arise in the static analysis of data structure consistency properties. Data structures often use an integer variable to keep track of the number of elements they store; an invariant of such a data structure is that the value of the integer variable is equal to the number of elements stored in the data structure. When the data structure content is represented by a set, the resulting constraints can be captured in BAPA. BAPA formulas with quantifier alternations arise when verifying programs with annotations containing quantifiers, or when proving simulation relation conditions for refinement and equivalence of program fragments. Furthermore, BAPA constraints can be used for proving the termination of programs that manipulate data structures, and have applications in constraint databases.
We give a formal description of a decision procedure for BAPA, which implies the decidability of BAPA. We analyze our algorithm and obtain an elementary upper bound on the running time, thereby giving the first complexity bound for BAPA. Because it works by a reduction to PA, our algorithm yields the decidability of a combination of sets of uninterpreted elements with any decidable extension of PA. Our algorithm can also be used to yield an optimal decision procedure for BA through a reduction to PA with bounded quantifiers.
We have implemented our algorithm and used it to discharge verification conditions in the Jahob system for data structure consistency checking of Java programs; our experience with the algorithm is promising.
CADE-20.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackermann, W.: Solvable Cases of the Decision Problem. North Holland, Amsterdam (1954)
Andrews, P.B., Issar, S., Nesmith, D., Pfenning, F.: The TPS theorem proving system. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 641–642. Springer, Heidelberg (1990)
Arkoudas, K., Zee, K., Kuncak, V., Rinard, M.: Verifying a file system implementation. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 373–390. Springer, Heidelberg (2004)
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.(ed.): The Description Logic Handbook: Theory, Implementation and Applications. In: CUP (2003)
Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)
Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisibility. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 425–439. Springer, Heidelberg (2005)
Bruyére, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin 1, 191–238 (1994)
Cantone, D., Omodeo, E., Policriti, A.: Set Theory for Computing. Springer, Heidelberg (2001)
Chaieb, A., Nipkow, T.: Generic proof synthesis for Presburger arithmetic. Technical report, Technische Universität München (October 2003)
Chin, W.-N., Khoo, S.-C., Xu, D.N.: Extending sized types with with collection analysis. In: ACM PEPM 2003 (2003)
Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press (1972)
Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Laboratories Palo Alto (2003)
Dewar, R.K.: Programming by refinement, as exemplified by the SETL representation sublanguage. In: ACM TOPLAS (July 1979)
Feferman, S., Vaught, R.L.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)
Ferrante, J., Rackoff, C.W.: The Computational Complexity of Logical Theories. Lecture Notes in Mathematics, vol. 718. Springer, Heidelberg (1979)
Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)
Gordon, M.J.C., Melham, T.F.: Introduction to HOL, a theorem proving environment for higher-order logic. Cambridge University Press, Cambridge (1993)
Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)
Hodges, W.: Model Theory. In: Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge (1993)
Kapur, D.: Automatically generating loop invariants using quantifier elimination. In: IMACS Intl. Conf. on Applications of Computer Algebra (2004)
Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, p. 182. Springer, Heidelberg (2000)
Kozen, D.: Complexity of boolean algebras. Theoretical Computer Science 10, 221–247 (1980)
Kuncak, V.: The Jahob project web page (2004), http://www.mit.edu/~vkuncak/projects/jahob/
Kuncak, V., Rinard, M.: On the theory of structural subtyping. Technical Report 879, Laboratory for Computer Science, Massachusetts Institute of Technology (2003)
Kuncak, V., Rinard, M.: Structural subtyping of non-recursive types is decidable. In: Eighteenth Annual IEEE Symposium on Logic in Computer Science (2003)
Kuncak, V., Rinard, M.: The first-order theory of sets with cardinality constraints is decidable. Technical Report 958, MIT CSAIL (July 2004)
Kuncak, V., Rinard, M.: Decision procedures for set-valued fields. In: 1st International Workshop on Abstract Interpretation of Object-Oriented Languages, AIOOL 2005 (2005)
Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking using set interfaces and pluggable analyses. SIGPLAN Notices 39, 46–55 (2004)
Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking for data structure consistency. In: 6th International Conference on Verification, Model Checking and Abstract Interpretation (2005)
LASH. The LASH Toolset, http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
Loewenheim, L.: Über mögligkeiten im relativkalkül. Math. Annalen 76, 228–251 (1915)
Marriott, K., Odersky, M.: Negative boolean constraints. Technical Report 94/203, Monash University (August 1994)
Martin, U., Nipkow, T.: Boolean unification: The story so far. Journal of Symbolic Computation 7(3), 275–293 (1989)
Møller, A., Schwartzbach, M.I.: The Pointer Assertion Logic Engine. In: Proc. ACM PLDI (2001)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM TOPLAS 1(2), 245–257 (1979)
Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)
Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termination. In: ACM POPL (2005)
Presburger, M.: über die vollständigkeit eines gewissen systems der aritmethik ganzer zahlen, in welchem die addition als einzige operation hervortritt. In: Comptes Rendus du premier Congrès des Mathématiciens des Pays slaves, Warsawa, pp. 92–101 (1929)
Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. In: Supercomputing 1991: Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pp. 4–13. ACM Press, New York (1991)
Reddy, C.R., Loveland, D.W.: Presburger arithmetic with bounded quantifier alternation. In: ACM STOC, pp. 320–325. ACM Press, New York (1978)
Revesz, P.: Quantifier-elimination for the first-order theory of boolean algebras with linear cardinality constraints. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 1–21. Springer, Heidelberg (2004)
Ruess, H., Shankar, N.: Deconstructing Shostak. In: Proc. 16th IEEE LICS (2001)
Rugina, R.: Quantitative shape analysis. In: Static Analysis Symposium, SAS 2004 (2004)
Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM TOPLAS 24(3), 217–298 (2002)
Skolem, T.: Untersuchungen über die Axiome des Klassenkalküls and über Produktations- und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen. Skrifter utgit av Vidnskapsselskapet i Kristiania, I. klasse, Oslo, vol. 3 (1919)
Stump, A., Barrett, C., Dill, D.: CVC: a Cooperating Validity Checker. In: 14th International Conference on Computer-Aided Verification (2002)
Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages Vol.3: Beyond Words, Springer, Heidelberg (1997)
Tinelli, C., Zarba, C.: Combining non-stably infinite theories. Journal of Automated Reasoning (2004) (Accepted for publication)
Tiwari, A.: Decision procedures in automated deduction. PhD thesis, Department of Computer Science, State University of New York at Stony Brook (2000)
Voronkov, A.: The anatomy of Vampire (implementing bottom-up procedures with code trees). Journal of Automated Reasoning 15(2), 237–265 (1995)
Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract operations for shape analysis. In: 10th TACAS (2004)
Zarba, C.G.: The Combination Problem in Automated Reasoning. PhD thesis, Stanford University (2004)
Zarba, C.G.: Combining sets with elements. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 762–782. Springer, Heidelberg (2004)
Zarba, C.G.: A quantifier elimination algorithm for a fragment of set theory involving the cardinality operator. In: 18th International Workshop on Unification (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuncak, V., Nguyen, H.H., Rinard, M. (2005). An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_20
Download citation
DOI: https://doi.org/10.1007/11532231_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28005-7
Online ISBN: 978-3-540-31864-4
eBook Packages: Computer ScienceComputer Science (R0)