Abstract
Contemporary software systems are exposed to demanding, dynamic, and unpredictable environments where the traditional adaptability mechanisms may not be sufficient. To imitate and fully benefit from life-like adaptability in software systems that might come closer to the complexity levels of biological organisms, we seek a formal mathematical model of certain fundamental concepts such as: life, organism, evolvability and adaptation. In this work we concentrate on the concept of software evolvability. Our work proposes an evolutionary computation model, based on the theory of hypercycles and autopoiesis. The intrinsic properties of hypercycles allow them to evolve into higher levels of complexity, analogous to multi-level, or hierarchical evolutionary processes. We aim to obtain structures of self-maintaining ensembles, that are hierarchically organised, and our primary focus is on such open-ended hierarchically organised evolution.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brillouin, L.: Science and information theory. Academic Press Inc., London (1956)
Chaitin, G.J.: To a mathematical definition of ’life’. ACM SICACT News 4, 12–18 (1970)
Chaitin, G.J.: Toward a mathematical definition of ”life”. In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism, pp. 477–498. MIT Press, Cambridge (1979)
Darwin, C.: On the Origin of Species by Means of Natural Selection. John Murray, London (1859)
Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self- Organization. Springer, Heidelberg (1979)
Flake, G.W.: The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, Cambridge (2000)
Fogel, D.B. (ed.): Evolutionary Computation – The Fossil Record. IEEE Press, New York (1998)
Fox, J.: Multiple Stack Zero Operand Computers Today. Free Software Magazine (05) (2002)
Fredkin, E.: A new cosmogony: On the origin of the universe. In: Phys Comp 1992: Proceedings of the Workshop on Physics and Computation. IEEE Press, Los Alamitos (1992)
Gecow, A., Hoffman, A.: Self-improvement in a complex cybernetic system and its implication for biology. Acta Biotheoretica 32(1), 61–71 (1983)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992) (reprint edition)
Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley Publishing Company, USA (1979)
Jones, N.D.: Computability and Complexity: From a Programming Perspective. MIT Press, Cambridge (1997)
Kauffman, S.A.: The origins of order: self-organization and selection in evolution. Oxford Press, NewYork (1993)
Kokar, M., Baclawski, K., Eracar, A.: Control theory-based foundations of self-controlling software. IEEE Intelligent Systems, 37–45 (May-June 1999)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)
Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, NewYork (1997)
Margulis, L., Sagan, D.: What is life?, NewYork, Simon, Schuster (1995)
Maturana, H.R., Varela, F.J.: Autopoiesis: The organization of the living. In: Cohen, R.S., Wartofsky, M.W. (eds.) Autopoiesis and Cognition: The Realization of the Living. Boston Studies in the Philosophy of Science, vol. 42, D. Reidel Publishing Company, Dordrech (1980); With a preface to ’Autopoiesis’ by Sir Stafford Beer. Originally published in Chile in 1972 under the title De maquinas y Seres Vivos, by Editorial Univesitaria S.A.
Meng, A.C.: On evaluating self-adaptive software. In: Robertson, P., Shrobe, H., Laddaga, R. (eds.) IWSAS 2000. LNCS, vol. 1936, p. 65. Springer, Heidelberg (2001)
Moore, C.H., Goeffrey, C.L.: FORTH – A language for interactive computing. Technical report. Mohasco Industries, Inc., Amsterdam (1970)
Orgel, L.E.: The Origins of Life: Molecules and Natural Selection. Wiley, NewYork (1973)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Inc., Reading (1994)
Prigogine, I., Stengers, I.: From being to becoming. W. H. Freeman, San Francisco (1980)
Purvis, M., Cranefield, S., Bush, G., Carter, D., McKinlay, B., Nowostawski, M., Ward, R.: The NZDIS Project: an Agent-based Distributed Information Systems Architecture. In: Sprague Jr., R.H. (ed.) CDROM Proceedings of the Hawaii International Conference on System Sciences (HICSS-33). IEEE Computer Society Press, Los Alamitos (2000)
Rosca, J.P.: Hierarchical learning with procedural abstraction mechanisms. PhD thesis, University of Rochester, Rochester, NY 14627, USA (1997)
Ryan, C., Collins, J.J., O’Neill, M.: Grammatical evolution: Evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998)
Schmidhuber, J.: The speed prior: a new simplicity measure yielding near-optimal computable predictions (2002)
Schmidhuber, J.: A general method for incremental self-improvement and multiagent learning. In: Yao, X. (ed.) Evolutionary Computation: Theory and Applications, ch. 3, pp. 81–123. Scientific Publishers Co., Singapore (1999)
Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004)
Schrödinger, E.: What is life?: the physical aspect of the living cell. University Press, Cambridge (1945)
Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, US (1949)
Simon, H.A.: The sciences of the artificial. MIT Press, Cambridge (1968)
Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the Push programming language. Genetic Programming and Evolvable Machines 3(1), 7–40 (2002)
Spector, L.: Hierarchy helps it work that way. Philosophical Psychology 15(2), 109–117 (2002)
Venners, B.: Inside the Java Virtual Machine., 2nd edn. Mc-Graw Hill, New York (1999)
von Neumann, J.L.: The general and logical theory of automata. In: Taub, A.H. (ed.) John von Neumann – Collected Works, vol. V, pp. 288–328. Macmillan, New York (1963)
von Neumann, J.L., Burks., A.W.: Theory of self-reproducing automata (1966)
Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. A Bradford Book. MIT Press, Cambridge (1999)
Wright, S.: Evolution in mendelian populations. Genetics 16(3), 97–159 (1931)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nowostawski, M., Purvis, M., Cranefield, S. (2005). An Architecture for Self-Organising Evolvable Virtual Machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds) Engineering Self-Organising Systems. ESOA 2004. Lecture Notes in Computer Science(), vol 3464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494676_7
Download citation
DOI: https://doi.org/10.1007/11494676_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26180-3
Online ISBN: 978-3-540-31901-6
eBook Packages: Computer ScienceComputer Science (R0)