[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Axl, a Geometric Modeler for Semi-algebraic Shapes

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2018 (ICMS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10931))

Included in the following conference series:

  • 1206 Accesses

Abstract

We describe the algebraic-geometric modeling platform Axl, which provides tools for the manipulation, computation and visualisation of semi-algebraic models. This includes meshes, basic geometric objects such as spheres, cylinders, cones, ellipsoids, torus, piecewise polynomial parameterisations of curves, surfaces or volumes such as b-spline parameterisations, as well as algebraic curves and surfaces defined by polynomial equations. Moreover, Axl provides algorithms for processing these geometric representations, such as computing intersection loci (points, curves) of parametric models, singularities of algebraic curves or surfaces, certified topology of curves and surfaces, etc.

We present its main features and describe its generic extension mechanism, which allows one to define new data types and new processes on the data, which benefit from automatic visualisation and interaction facilities. The application capacities of the software are illustrated by short descriptions of plugins on algebraic curves and surfaces and on splines for Isogeometric Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.sintef.no/projectweb/geometry-toolkits/gotools/.

References

  1. Alberti, L., Mourrain, B.: Regularity criteria for the topology of algebraic curves and surfaces. In: Martin, R., Sabin, M., Winkler, J. (eds.) Mathematics of Surfaces XII. LNCS, vol. 4647, pp. 1–28. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73843-5_1

    Chapter  MATH  Google Scholar 

  2. Alberti, L., Mourrain, B.: Visualisation of implicit algebraic curves. In: Pacific Conference on Computer Graphics and Applications, Lahaina, Maui, Hawaii, United States, pp. 303–312. IEEE Computer Society, October 2007

    Google Scholar 

  3. Alberti, L., Mourrain, B., Técourt, J.P.: Isotopic triangulation of a real algebraic surface. J. Symb. Comput. 44(9), 1291–1310 (2009)

    Article  MathSciNet  Google Scholar 

  4. Alberti, L., Mourrain, B., Wintz, J.: Topology and arrangement computation of semi-algebraic planar curves. Comput. Aided Geom. Des. 25(8), 631–651 (2008)

    Article  MathSciNet  Google Scholar 

  5. Emiris, I., Mantzaflaris, A., Mourrain, B.: Voronoi diagrams of algebraic distance fields. Comput. Aided Des. 45(2), 511–516 (2013)

    Article  MathSciNet  Google Scholar 

  6. Giannelli, C., Juettler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Speh, J.: THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)

    Article  MathSciNet  Google Scholar 

  7. Juettler, B., Langer, U., Mantzaflaris, A., Moore, S., Zulehner, W.: Geometry + simulation modules: implementing isogeometric analysis. Proc. Appl. Math. Mech. 14(1), 961–962 (2014)

    Article  Google Scholar 

  8. Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Multipatch discontinuous galerkin isogeometric analysis. In: Jüttler, B., Simeon, B. (eds.) Isogeometric Analysis and Applications 2014. LNCSE, vol. 107, pp. 1–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23315-4_1

    Chapter  MATH  Google Scholar 

  9. Liang, C., Mourrain, B., Pavone, J.P.: Subdivision methods for the topology of 2D and 3D implicit curves. In: Juetller, B., Piene, R. (eds.) Geometric Modeling and Algebraic Geometry, pp. 199–214. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72185-7_11

    Chapter  MATH  Google Scholar 

  10. Mantzaflaris, A., Mourrain, B.: A subdivision approach to planar semi-algebraic sets. In: Mourrain, B., Schaefer, S., Xu, G. (eds.) GMP 2010. LNCS, vol. 6130, pp. 104–123. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13411-1_8

    Chapter  Google Scholar 

  11. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)

    Article  MathSciNet  Google Scholar 

  12. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware, Clifton Park (2006)

    Google Scholar 

  13. Wintz, J., Kloczko, T., Niclausse, N., Rey, D.: dtk - a metaplatform for scientific software development. ERCIM News 2012(88) (2012). http://ercim-news.ercim.eu/en88/ri/dtk-a-metaplatform-for-scientific-software-development

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Christoforou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Christoforou, E., Mantzaflaris, A., Mourrain, B., Wintz, J. (2018). Axl, a Geometric Modeler for Semi-algebraic Shapes. In: Davenport, J., Kauers, M., Labahn, G., Urban, J. (eds) Mathematical Software – ICMS 2018. ICMS 2018. Lecture Notes in Computer Science(), vol 10931. Springer, Cham. https://doi.org/10.1007/978-3-319-96418-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96418-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96417-1

  • Online ISBN: 978-3-319-96418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics