[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

How Perturbation Strength Shapes the Global Structure of TSP Fitness Landscapes

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2018)

Abstract

Local optima networks are a valuable tool used to analyse and visualise the global structure of combinatorial search spaces; in particular, the existence and distribution of multiple funnels in the landscape. We extract and analyse the networks induced by Chained-LK, a powerful iterated local search for the TSP, on a large set of randomly generated (Uniform and Clustered) instances. Results indicate that increasing the perturbation strength employed by Chained-LK modifies the landscape’s global structure, with the effect being markedly different for the two classes of instances. Our quantitative analysis shows that several funnel metrics have stronger correlations with Chained-LK success rate than the number of local optima, indicating that global structure clearly impacts search performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    dimacs.rutgers.edu/Challenges/TSP/download.html.

References

  1. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 555–562. ACM (2008)

    Google Scholar 

  2. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

    Article  Google Scholar 

  3. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  4. Ochoa, G., Veerapen, N.: Mapping the global structure of tsp fitness landscapes. J. Heuristics 1–30 (2017). https://doi.org/10.1007/s10732-017-9334-0. ISSN 15729397

  5. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 58–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_5

    Chapter  Google Scholar 

  6. Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)

    Article  Google Scholar 

  7. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)

    Article  MathSciNet  Google Scholar 

  8. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  MathSciNet  Google Scholar 

  9. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 320–353. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  10. Herrmann, S., Herrmann, M., Ochoa, G., Rothlauf, F.: Shaping communities of local optima by perturbation strength. In: Genetic and Evolutionary Computation Conference, GECCO, pp. 266–273 (2017)

    Google Scholar 

  11. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)

    Article  MathSciNet  Google Scholar 

  12. Stadler, P.F.: Fitness landscapes. Appl. Math. Comput. 117, 187–207 (2002)

    MathSciNet  Google Scholar 

  13. Veerapen, N., Ochoa, G., Tinós, R., Whitley, D.: Tunnelling crossover networks for the asymmetric TSP. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN XIV. LNCS, vol. 9921, pp. 994–1003. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_93

    Chapter  Google Scholar 

  14. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_16

    Chapter  Google Scholar 

  15. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  16. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003). http://www.math.uwaterloo.ca/tsp/concorde.html

  17. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Leverhulme Trust [award number RPG-2015-395] and by the UK’s Engineering and Physical Sciences Research Council [grant number EP/J017515/1]. Results were obtained using the EPSRC-funded ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk, EPSRC grant EP/K000586/1).

Data Access. All data generated for this research are openly available from the Stirling Online Repository for Research Data (http://hdl.handle.net/11667/104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul McMenemy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McMenemy, P., Veerapen, N., Ochoa, G. (2018). How Perturbation Strength Shapes the Global Structure of TSP Fitness Landscapes. In: Liefooghe, A., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2018. Lecture Notes in Computer Science(), vol 10782. Springer, Cham. https://doi.org/10.1007/978-3-319-77449-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77449-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77448-0

  • Online ISBN: 978-3-319-77449-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics