Abstract
Local optima networks are a valuable tool used to analyse and visualise the global structure of combinatorial search spaces; in particular, the existence and distribution of multiple funnels in the landscape. We extract and analyse the networks induced by Chained-LK, a powerful iterated local search for the TSP, on a large set of randomly generated (Uniform and Clustered) instances. Results indicate that increasing the perturbation strength employed by Chained-LK modifies the landscape’s global structure, with the effect being markedly different for the two classes of instances. Our quantitative analysis shows that several funnel metrics have stronger correlations with Chained-LK success rate than the number of local optima, indicating that global structure clearly impacts search performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 555–562. ACM (2008)
Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)
Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
Ochoa, G., Veerapen, N.: Mapping the global structure of tsp fitness landscapes. J. Heuristics 1–30 (2017). https://doi.org/10.1007/s10732-017-9334-0. ISSN 15729397
Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 58–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_5
Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)
Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)
Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)
Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 320–353. Kluwer Academic Publishers, Boston (2003)
Herrmann, S., Herrmann, M., Ochoa, G., Rothlauf, F.: Shaping communities of local optima by perturbation strength. In: Genetic and Evolutionary Computation Conference, GECCO, pp. 266–273 (2017)
Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)
Stadler, P.F.: Fitness landscapes. Appl. Math. Comput. 117, 187–207 (2002)
Veerapen, N., Ochoa, G., Tinós, R., Whitley, D.: Tunnelling crossover networks for the asymmetric TSP. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN XIV. LNCS, vol. 9921, pp. 994–1003. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_93
Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_16
Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)
Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003). http://www.math.uwaterloo.ca/tsp/concorde.html
Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)
Acknowledgements
This work was supported by the Leverhulme Trust [award number RPG-2015-395] and by the UK’s Engineering and Physical Sciences Research Council [grant number EP/J017515/1]. Results were obtained using the EPSRC-funded ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk, EPSRC grant EP/K000586/1).
Data Access. All data generated for this research are openly available from the Stirling Online Repository for Research Data (http://hdl.handle.net/11667/104).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
McMenemy, P., Veerapen, N., Ochoa, G. (2018). How Perturbation Strength Shapes the Global Structure of TSP Fitness Landscapes. In: Liefooghe, A., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2018. Lecture Notes in Computer Science(), vol 10782. Springer, Cham. https://doi.org/10.1007/978-3-319-77449-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-77449-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77448-0
Online ISBN: 978-3-319-77449-7
eBook Packages: Computer ScienceComputer Science (R0)