[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Verifying Array Manipulating Programs by Tiling

  • Conference paper
  • First Online:
Static Analysis (SAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10422))

Included in the following conference series:

Abstract

Formally verifying properties of programs that manipulate arrays in loops is computationally challenging. In this paper, we focus on a useful class of such programs, and present a novel property-driven verification method that first infers array access patterns in loops using simple heuristics, and then uses this information to compositionally prove universally quantified assertions about arrays. Specifically, we identify tiles of array access patterns in a loop, and use the tiling information to reduce the problem of checking a quantified assertion at the end of a loop to an inductive argument that checks only a slice of the assertion for a single iteration of the loop body. We show that this method can be extended to programs with sequentially composed loops and nested loops as well. We have implemented our method in a tool called \(\textsc {Tiler}\). Initial experiments show that \(\textsc {Tiler}\) outperforms several state-of-the-art tools on a suite of interesting benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_48

    Chapter  Google Scholar 

  2. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69, 35–45 (2007)

    Google Scholar 

  3. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based verification framework for array programs. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 18–23. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6_2

    Google Scholar 

  4. Monniaux, D., Gonnord, L.: Cell Morphing: from array programs to array-free horn clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53413-7_18

    Chapter  Google Scholar 

  5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2_15

    Chapter  Google Scholar 

  6. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7_32

    Chapter  Google Scholar 

  7. Sundararajah, K., Sakka, L., Kulkarni, M.: Locality transformations for nested recursive iteration spaces. In: Proceedings of ASPLOS, pp. 281–295 (2017)

    Google Scholar 

  8. Jo, Y., Kulkarni, M.: Enhancing locality for recursive traversals of recursive structures. In: Proceedings of OOPSLA, pp. 463–482 (2011)

    Google Scholar 

  9. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic and scalable array content analysis. In: Proceedings of POPL, pp. 105–118 (2011)

    Google Scholar 

  10. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  11. Hähnle, R., Bubel, R.: A hoare-style calculus with explicit state updates. In: Formal Methods in Computer Science Education, pp. 49–60 (2008)

    Google Scholar 

  12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5_4

    Chapter  Google Scholar 

  13. Lattner, C.: LLVM and Clang: next generation compiler technology. In: The BSD Conference, pp. 1–2 (2008)

    Google Scholar 

  14. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.: SMACK+Corral: a modular verifier. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 451–454. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_42

    Google Scholar 

  15. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_2

    Google Scholar 

  16. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause verification. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_24

    Chapter  Google Scholar 

  17. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6_23

    Chapter  Google Scholar 

  18. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear loops. In: Proceedings of POPL, pp. 529–540 (2014)

    Google Scholar 

  19. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstraction with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6_7

    Chapter  Google Scholar 

  20. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3_23

    Chapter  Google Scholar 

  21. Monniaux, D., Alberti, F.: A simple abstraction of arrays and maps by program translation. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 217–234. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48288-9_13

    Chapter  Google Scholar 

  22. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11957-6_14

    Chapter  Google Scholar 

  23. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array operations. In: Proceedings of POPL, pp. 338–350 (2005)

    Google Scholar 

  24. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs. In: Proceedings of PLDI, pp. 339–348 (2008)

    Google Scholar 

  25. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: Proceedings of LPAR, pp. 15–27 (2015)

    Google Scholar 

  26. Liu, J., Rival, X.: Abstraction of arrays based on non contiguous partitions. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 282–299. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46081-8_16

    Google Scholar 

  27. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical domains. In: Proceedings of POPL, pp. 235–246 (2008)

    Google Scholar 

  28. Jana, A., Khedker, U.P., Datar, A., Venkatesh, R., Niyas, C.: Scaling bounded model checking by transforming programs with arrays. In: Proceedings of LOPSTR (2016)

    Google Scholar 

  29. Ren, B., Agrawal, G., Larus, J.R., Mytkowicz, T., Poutanen, T., Schulte, W.: SIMD parallelization of applications that traverse irregular data structures. In: Proceedings of CGO, pp. 20:1–20:10 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divyesh Unadkat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chakraborty, S., Gupta, A., Unadkat, D. (2017). Verifying Array Manipulating Programs by Tiling. In: Ranzato, F. (eds) Static Analysis. SAS 2017. Lecture Notes in Computer Science(), vol 10422. Springer, Cham. https://doi.org/10.1007/978-3-319-66706-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66706-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66705-8

  • Online ISBN: 978-3-319-66706-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics