Abstract
In the framework of computable topology, we propose an approach how to develop higher effective descriptive set theory. We introduce a wide class \(\mathbb {K}\) of effective \(T_0\)-spaces admitting Borel point recovering. For this class we propose the notion of an \((\alpha ,m)\)-retractive morphism that gives a great opportunity to extend classical results from EDST to the class \(\mathbb {K}\). We illustrate this by several examples.
The research has been partially supported by the DFG grants CAVER BE 1267/14-1 and WERA MU 1801/5-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Becher, V., Heiber, P., Slaman, T.A.: Normal numbers and the Borel hierarchy. Fundamenta Mathematicae 22, 63–77 (2014)
de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Logic 164, 356–381 (2013)
Gao, S.: Invariant Descriptive Set Theory. CRC Press, New York (2009)
Gregoriades, V., Kispeter, T., Pauly, A.: A comparison of concepts from computable analysis and effective descriptive set theory. Math. Struct. Comput. Sci. 1–23 (2016). https://doi.org/10.1017/S0960129516000128. (Published online: 23 June 2016)
Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)
Korovina, M., Kudinov, O.: Complexity for partial computable functions over computable Polish spaces. Math. Struct. Comput. Sci. (2016). doi:10.1017/S0960129516000438. (Published online: 19 December 2016)
Korovina, M., Kudinov, O.: Index sets as a measure of continuous constraint complexity. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp. 201–215. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46823-4_17
Korovina, M., Kudinov, O.: Towards computability over effectively enumerable topological spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125 (2008)
Korovina, M., Kudinov, O.: Towards computability of higher type continuous data. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 235–241. Springer, Heidelberg (2005). doi:10.1007/11494645_30
Louveau, A.: Recursivity and compactness. In: Müller, G.H., Scott, D.S. (eds.) Higher Set Theory. LNM, vol. 669, pp. 303–337. Springer, Heidelberg (1978). doi:10.1007/BFb0103106
Montalban, A., Nies, A.: Borel structures: a brief survey. Lect. Notes Logic 41, 124–134 (2013)
Moschovakis, Y.N.: Descriptive Set Theory. Studies in Logic Series. North Holland, Amsterdam (1980)
Moschovakis, Y.N.: Descriptive Set Theory, 2nd edn. North-Holland, Amsterdam (2009)
Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)
Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer Science and Business Media, Heidelberg (1987)
Spreen, D.: On effective topological spaces. J. Symb. Log. 63(1), 185–221 (1998)
Selivanov, V.L.: Towards a descriptive set theory for domain-like structures. Theor. Comput. Sci. 365(3), 258–282 (2006)
Selivanov, V.: Towards the effective descriptive set theory. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 324–333. Springer, Cham (2015). doi:10.1007/978-3-319-20028-6_33
Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Korovina, M., Kudinov, O. (2017). On Higher Effective Descriptive Set Theory. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-58741-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58740-0
Online ISBN: 978-3-319-58741-7
eBook Packages: Computer ScienceComputer Science (R0)