[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Higher Effective Descriptive Set Theory

  • Conference paper
  • First Online:
Unveiling Dynamics and Complexity (CiE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10307))

Included in the following conference series:

Abstract

In the framework of computable topology, we propose an approach how to develop higher effective descriptive set theory. We introduce a wide class \(\mathbb {K}\) of effective \(T_0\)-spaces admitting Borel point recovering. For this class we propose the notion of an \((\alpha ,m)\)-retractive morphism that gives a great opportunity to extend classical results from EDST to the class \(\mathbb {K}\). We illustrate this by several examples.

The research has been partially supported by the DFG grants CAVER BE 1267/14-1 and WERA MU 1801/5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becher, V., Heiber, P., Slaman, T.A.: Normal numbers and the Borel hierarchy. Fundamenta Mathematicae 22, 63–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Logic 164, 356–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao, S.: Invariant Descriptive Set Theory. CRC Press, New York (2009)

    MATH  Google Scholar 

  4. Gregoriades, V., Kispeter, T., Pauly, A.: A comparison of concepts from computable analysis and effective descriptive set theory. Math. Struct. Comput. Sci. 1–23 (2016). https://doi.org/10.1017/S0960129516000128. (Published online: 23 June 2016)

  5. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  6. Korovina, M., Kudinov, O.: Complexity for partial computable functions over computable Polish spaces. Math. Struct. Comput. Sci. (2016). doi:10.1017/S0960129516000438. (Published online: 19 December 2016)

  7. Korovina, M., Kudinov, O.: Index sets as a measure of continuous constraint complexity. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp. 201–215. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46823-4_17

    Google Scholar 

  8. Korovina, M., Kudinov, O.: Towards computability over effectively enumerable topological spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Korovina, M., Kudinov, O.: Towards computability of higher type continuous data. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 235–241. Springer, Heidelberg (2005). doi:10.1007/11494645_30

    Chapter  Google Scholar 

  10. Louveau, A.: Recursivity and compactness. In: Müller, G.H., Scott, D.S. (eds.) Higher Set Theory. LNM, vol. 669, pp. 303–337. Springer, Heidelberg (1978). doi:10.1007/BFb0103106

    Chapter  Google Scholar 

  11. Montalban, A., Nies, A.: Borel structures: a brief survey. Lect. Notes Logic 41, 124–134 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Moschovakis, Y.N.: Descriptive Set Theory. Studies in Logic Series. North Holland, Amsterdam (1980)

    MATH  Google Scholar 

  13. Moschovakis, Y.N.: Descriptive Set Theory, 2nd edn. North-Holland, Amsterdam (2009)

    Book  MATH  Google Scholar 

  14. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  15. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer Science and Business Media, Heidelberg (1987)

    Book  MATH  Google Scholar 

  16. Spreen, D.: On effective topological spaces. J. Symb. Log. 63(1), 185–221 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Selivanov, V.L.: Towards a descriptive set theory for domain-like structures. Theor. Comput. Sci. 365(3), 258–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Selivanov, V.: Towards the effective descriptive set theory. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 324–333. Springer, Cham (2015). doi:10.1007/978-3-319-20028-6_33

    Chapter  Google Scholar 

  19. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Korovina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Korovina, M., Kudinov, O. (2017). On Higher Effective Descriptive Set Theory. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58741-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58740-0

  • Online ISBN: 978-3-319-58741-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics