[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reachability in Graph Transformation Systems and Slice Languages

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9151))

Included in the following conference series:

Abstract

In this work we show that the reachability problem for graph transformation systems is in the complexity class XP when parameterized with respect to the depth of derivations and the cutwidth of the source graph. More precisely, we show that for any set \(\mathcal {R}\) of graph transformation rules, one can determine in time \(f(c,d)\cdot |G|\cdot |H|^{g(c,d)}\) whether a graph G of cutwidth c can be transformed into a graph H in depth at most d by the application of graph transformation rules from \(\mathcal {R}\). In particular, our algorithm runs in polynomial time when c and d are constants. On the other hand, we show that the problem becomes NP-hard if we allow \(c=O(|G|)\) and \(d=5\). In the case in which all transformation rules are monotone we get an algorithm running in time \(f(c,d)\cdot |G|^{O(c)}\cdot |H|\). To prove our main theorems we will establish an interesting connection between graph transformation systems and regular slice languages. More precisely, we show that if \(\mathcal {A}\) is a slice automaton representing a set \({\mathcal {L}}_{{\mathcal {G}}}(\mathcal {A})\) of graphs, then one can construct in time linear in \(|\mathcal {A}|\) a slice automaton \(\mathcal {N}(\mathcal {A})\) representing the set of all graphs that can be obtained from graphs in \({\mathcal {L}}_{{\mathcal {G}}}(\mathcal {A})\) by the application of one layer of transformation rules in \(\mathcal {R}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    XP is the class of problems that can be solved in time \(f(\overline{p})\cdot n^{g(\overline{p})}\) where n is the size of the input, f and g are computable functions, and \(\overline{p}\) is a list of parameters.

References

  1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S., Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and programming. Sci. Comput. Program. 34(1), 1–54 (1999)

    Article  MATH  Google Scholar 

  2. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-state graph transformation systems. Inf. Comput. 206(7), 869–907 (2008)

    Article  MATH  Google Scholar 

  3. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: a software engineering perspective. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 431–433. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math. Syst. Theory 20(2–3), 83–127 (1987)

    Article  MathSciNet  Google Scholar 

  5. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: Rewriting Techniques and Applications, vol. 12, pp. 101–116 (2012)

    Google Scholar 

  6. Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruggink, H.S., König, B.: On the recognizability of arrow and graph languages. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 336–350. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3), 241–265 (1996)

    MathSciNet  MATH  Google Scholar 

  9. de Oliveira Oliveira, M.: Hasse diagram generators and petri nets. Fundamenta Informaticae 105(3), 263–289 (2010)

    MathSciNet  MATH  Google Scholar 

  10. de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 445–457. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z-topologically orderable digraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 123–136. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225 (1992)

    Google Scholar 

  13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    Google Scholar 

  14. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: Switching and Automata Theory, pp. 167–180. IEEE Computer Society (1973)

    Google Scholar 

  15. Ehrig, H., Rosen, B.K.: Parallelism and concurrency of graph manipulations. Theoret. Comput. Sci. 11(3), 247–275 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of graphs. Acta Informatica 34, 773–803 (1997)

    Article  MathSciNet  Google Scholar 

  17. Poskitt, C.M., Plump, D.: Verifying total correctness of graph programs. Electron. Commun. EASST 61, 1–20 (2013)

    Google Scholar 

  18. Rensink, A.: Explicit state model checking for graph grammars. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 114–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Rozenberg, G., Ehrig, H.: Handbook of graph grammars and computing by graph transformation, vol. 1. World Scientific Publishing, Singapore (1999)

    Google Scholar 

  20. Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J. Algorithms 56(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomas, W.: Finite-state recognizability of graph properties. Theorie des Automates et Applications 176, 147–159 (1992)

    Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge financial support from the European Research Council, ERC grant agreement 339691, within the context of the project Feasibility, Logic and Randomness (FEALORA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Oliveira Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Oliveira Oliveira, M. (2015). Reachability in Graph Transformation Systems and Slice Languages. In: Parisi-Presicce, F., Westfechtel, B. (eds) Graph Transformation. ICGT 2015. Lecture Notes in Computer Science(), vol 9151. Springer, Cham. https://doi.org/10.1007/978-3-319-21145-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21145-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21144-2

  • Online ISBN: 978-3-319-21145-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics