Abstract
The study of cellular automata rules suitable for cryptographic applications is under consideration. On one hand, cellular automata can be used to generate pseudo-random sequences as well as for the design of S-boxes in symmetric cryptography. On the other hand, Boolean functions with good properties like resiliency and non-linearity are usually obtained either by exhaustive search or by the use of genetic algorithms. We propose here to use some recent research in the classification of Boolean functions and to link it with the study of cellular automata rules. As a consequence of our technique, this also provides a mean to get Boolean functions with good cryptographic properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apohan, A.M., Koc, C.K.: Inversion of cellular automata iterations. Computer and Digital Techniques 144, 279–284 (1997)
Berlekamp, E., Welch, L.: Weight distribution of the cosets of the \((32,6)\) Reed-Muller code. IEEE Trans. Inf. Theory 18, 203–207 (1972)
Braeken, A., Borissov, Y., Nikova, S., Preneel, B.: Classification of Boolean functions of 6 variables or less with respect to some cryptographic properties. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 324–334. Springer, Heidelberg (2005)
Carlet, C.: Boolean functions for cryptography and error-correcting codes. Technical report, University of Paris 8 (2011)
Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: Transformations of the one-dimensional cellular automata rule space. Parallel Computing 23(11), 1593–1611 (1997)
Elliott, D.E., Rao, K.R.: Fast transforms, algorithms, analysis, applications. Academic press (1982)
Formenti, E., Imai, K., Martin, B., Yunès, J.-B.: On 1-resilient, radius 2 elementary CA rules. In: Fatès, N., Goles, E., Maass, A., Rapaport, I. (eds.) Automata 2011, pp. 41–54 (2011)
Goldreich, O.: Pseudorandomness. Notices of the AMS 46(10), 1209–1216 (1999)
Gruska. J.: Foundations of Computing. International Thomson Publishing (1997)
Gruska, J., La Torre, S., Parente, M.: The firing squad synchronization problem on squares, toruses and rings. Int. J. Found. Comput. Sci. 18(3), 637–654 (2007)
Lacharme, P., Martin, B., Solé, P.: Pseudo-random sequences, boolean functions and cellular automata. In: Proceedings of Boolean Functions and Cryptographic Applications (2008)
Marsaglia, G.: A current view of random number generators. In: Computer Sciences and Statistics, pp. 3–10 (1985)
Marsaglia, G.: Diehard (1995). http://www.stat.fsu.edu/pub/diehard/
Martin, B.: A Walsh exploration of Wolfram CA rules. In: International Workshop on Cellular Automata, pp. 25–30. Hiroshima University, Japan (2006)
Martin, B.: Mixing compression and CA encryption. In: Bonnecaze, A., Leneutre, J., State, R. (eds.) SAR-SSI 2007, pp. 255–266. Université Jean Moulin, Lyon (2007)
Martin, B.: A Walsh exploration of elementary CA rules. Journal of Cellular Automata 3(2), 145–156 (2008)
Shackleford, B., Tanaka, M., Carter, R.J., Snider, G.: FPGA implementation of neighborhood-of-four cellular automata random number generators. In: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate Arrays, FPGA 2002, pp. 106–112. ACM (2002)
Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)
Wolfram, S.: Theory and applications of cellular automata. World Scientific, Singapore (1986)
Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)
Xiao, G.-Z., Massey, J.L.: A spectral characterization of correlation-immune combining functions. IEEE Trans. on Information Theory 34(3), 569 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Formenti, E., Imai, K., Martin, B., Yunès, JB. (2014). Advances on Random Sequence Generation by Uniform Cellular Automata. In: Calude, C., Freivalds, R., Kazuo, I. (eds) Computing with New Resources. Lecture Notes in Computer Science(), vol 8808. Springer, Cham. https://doi.org/10.1007/978-3-319-13350-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-13350-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13349-2
Online ISBN: 978-3-319-13350-8
eBook Packages: Computer ScienceComputer Science (R0)