[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors

  • Conference paper
Ambient Intelligence (AmI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8309))

Included in the following conference series:

Abstract

This paper is focused on a machine-learning approach for estimating human energy expenditure during sport and normal daily activities. The paper presents technical feasibility assessment that analyses requirements and applicability of smart phone sensors to human energy expenditure. The paper compares and evaluates three different sensor configuration sets: (i) a heart rate monitor and two standard inertial sensors attached to the users thigh and chest; (ii) a heart rate monitor with an embedded inertial sensor and a smart phone carried in the pocket; and (iii) only a smart phone carried in the pocket. The accuracy of the models is validated against indirect calorimetry using the Cosmed system and compared to a commercial device for energy expenditure SenseWear armband. The results show that models trained using relevant features can perform comparable or even better than available commercial device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. World health Organization, HEPA, http://www.euro.who.int/

  2. Cooper, S.B., Bandelow, S., Nute, M.L., Morris, J.G., Nevill, M.E.: The effects of a mid-morning bout of exercise on adolescents’ cognitive function. Mental Health and Physical Activity 5, 183–190 (2012)

    Article  Google Scholar 

  3. Hamer, M., Stamatakis, E.: Objectively assessed physical activity, fitness and subjective wellbeing. Mental Health and Physical Activity 3, 67–71 (2010)

    Article  Google Scholar 

  4. Kohl, H.W., Craig, C.L., Lambert, E.V., Inoue, S., Alkandari, J.R., Leetongin, G., Kahlmeier, S.: The pandemic of physical inactivity: global action for public health. The Lancet 380, 294–305 (2012)

    Article  Google Scholar 

  5. Webb, P., Annis, J.F., Troutman Jr., S.J.: Energy balance in man measured by direct and indirect calorimetry. American Journal of Clinical Nutrition 33, 1287–1298 (1980)

    Google Scholar 

  6. Levine, J.A.: Measurement of Energy Expenditure. Public Health Nutrition 8, 1123–1132 (2005)

    Article  Google Scholar 

  7. Speakman. J.: Doubly labelled water: Theory and practice. Springer (1997)

    Google Scholar 

  8. Nintendo Wii, http://www.nintendo.com/wii

  9. EA Sports Active 2, http://www.ea.com/ea-sports-active-2

  10. Lustrek, M., Gjoreski, H., Kozina, S., Cvetkovic, B., Mirchevska, V., Gams, M.: Detecting Falls with Location Sensors and Accelerometers. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence and the Twenty-Third Innovative Applications of Artificial Intelligence, pp. 1662–1667. AAAI Press (2011)

    Google Scholar 

  11. Kaluza, B., Cvetkovic, B., Dovgan, E., Gjoreski, H., Gams, M., Lustrek, M.: Multiagent Care System to Support Independent Living. International Journal on Artificial Intelligence Tools (accepted for publication, 2013)

    Google Scholar 

  12. Aminian, K., Mariani, B., Paraschiv-Ionescu, A., Hoskovec, C., Bula, C., Penders, J., Tacconi, C., Marcellini, F.: Foot worn inertial sensors for gait assessment and rehabilitation based on motorized shoes. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 5820–5823. IEEE Press (2011)

    Google Scholar 

  13. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference using accelerometers on smart phones. In: Proceedings of the Twelfth Workshop on Mobile Computing Systems and Applications, pp. 91–96. ACM, New York (2012)

    Google Scholar 

  14. Cosmed, http://www.cosmed.com/

  15. SenseWear, http://sensewear.bodymedia.com/

  16. Andre, D., Wolf, D.L.: Recent Advances in Free-Living Physical Activity Monitoring: A Review. J. Diabetes Sci. Technol. 1(5), 760–767 (2007)

    Google Scholar 

  17. ACCUPEDO, http://play.google.com/store/apps/details?id=com.corusen.accupedo.te

  18. Leijdekkers, P., Gay, V.: User Adoption of Mobile Apps for Chronic Disease Management: A Case Study Based on myFitnessCompanion®. In: Donnelly, M., Paggetti, C., Nugent, C., Mokhtari, M. (eds.) ICOST 2012. LNCS, vol. 7251, pp. 42–49. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., et al.: Compendium of physical activities: An update of activity codes and MET intensities. Medicine and Science in Sports and Exercise 32, 498–516 (2000)

    Article  Google Scholar 

  20. Heil, D.P.: Predicting activity energy expenditure using the actical activity monitor. Research Quarterly for Exercise and Sport 77, 64–80 (2006)

    Google Scholar 

  21. Bouten, C.V., Westerterp, K.R., Verduin, M., Janssen, J.D.: Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med. Sci. Sports Exerc. 26, 1516–1523 (1994)

    Article  Google Scholar 

  22. Crouter, S.E., Clowers, K.G., Bassett, D.R.: A novel method for using accelerometer data to predict energy expenditure. Journal of Applied Physiology 100, 1324–1331 (2006)

    Article  Google Scholar 

  23. Actigraph, http://www.actigraphcorp.com/

  24. Nike+, http://nikeplus.nike.com/plus/

  25. Shimmer research, http://www.shimmer-research.com/

  26. Zephyr Biohraness, http://www.zephyranywhere.com/products/bioharness-3/

  27. Samsung Galaxy SII, http://www.samsung.com/

  28. Kozina, S., Gjoreski, H., Gams, M., Lustrek, M.: Three-layer Activity Recognition Combining Domain Knowledge and Meta-classification. J. Med. Biol. Eng. (2013)

    Google Scholar 

  29. Cvetković, B., Kaluža, B., Luštrek, M., Gams, M.: Multi-Classifier Adaptive Training: Specialising an Activity Recognition Classifier Using Semi-supervised Learning. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds.) AmI 2012. LNCS, vol. 7683, pp. 193–207. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Tapia, E.M.: Using machine learning for real-time activity recognition and estimation of energy expenditure. Ph.D. Thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  31. Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 53, 23–69 (2003)

    Article  MATH  Google Scholar 

  32. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11, 10–18 (2009)

    Article  Google Scholar 

  33. Lustrek, M., Cvetkovic, B., Kozina, S.: Energy expenditure estimation with wearable accelerometers. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 5–8. IEEE Press (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Cvetković, B., Kaluža, B., Milić, R., Luštrek, M. (2013). Towards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors. In: Augusto, J.C., Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, AH. (eds) Ambient Intelligence. AmI 2013. Lecture Notes in Computer Science, vol 8309. Springer, Cham. https://doi.org/10.1007/978-3-319-03647-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03647-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03646-5

  • Online ISBN: 978-3-319-03647-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics