Abstract
This chapter builds on the notion that multimodal learning analytics (MMLA) has potential to offer new innovations for the field of education and can be gradually implemented to provide constitutive explanations to improve individual student regulation. We will ground the chapter on the theoretical framework of self-regulated learning (SRL), addressing especially the pivotal role of metacognitive monitoring as a part of regulated learning cycle. Hence, we will introduce the relationship between physiological arousal and monitoring. In particular, we will demonstrate via empirical examples how network analysis methods can provide new insights on the complex interrelations of how monitoring manifests in interactions and evolves across phases of SRL at the a) group level, b) temporal level, and c) individual student level. We conclude the chapter by discussing the prospects, possibilities and challenges of the network analysis as a methodological approach for SRL research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahonen, L., Cowley, B. U., Hellas, A., & Puolamäki, K. (2018). Biosignals reflect pair-dynamics in collaborative work: EDA and ECG study of pair-programming in a classroom environment. Scientific Reports, 8(1), 3138. https://doi.org/10.1038/s41598-018-21518-3
Azevedo, R., & Gašević, D. (2019). Analyzing multimodal multichannel data about self-regulated learning with advanced learning technologies: Issues and challenges. Computers in Human Behavior, 96, 207–210.
Baker, R., & Siemens, G. (2014). Educational data mining and learning analytics. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (2nd ed., pp. 253–274). https://doi.org/10.1017/CBO9781139519526.016
Beltz, A. M., Wright, A. G. C., Sprague, B. N., & Molenaar, P. C. M. (2016). Bridging the nomothetic and idiographic approaches to the analysis of clinical data. Assessment, 23(4), 447–458. https://doi.org/10.1177/1073191116648209
Benedek, M., & Kaernbach, C. (2010a). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80–91. https://doi.org/10.1016/j.jneumeth.2010.04.028
Benedek, M., & Kaernbach, C. (2010b). Decomposition of skin conductance by means of nonnegative deconvolution. Psychophysiology, 47(4), 647–658. https://doi.org/10.1111/j.1469-8986.2009.00972.x
Blikstein, P., & Worsley, M. (2016). Multimodal learning analytics and education data mining: Using computational technologies to measure complex learning tasks. Journal of Learning Analytics, 3(2), 220–238. https://doi.org/10.18608/jla.2016.32.11
Blikstein, P., Gomes, J. S., Akiba, H. T., & Schneider, B. (2017). The effect of highly scaffolded versus general instruction on students’ exploratory behavior and arousal. Technology, Knowledge and Learning, 22(1), 105–128. https://doi.org/10.1007/s10758-016-9291-y
Borgatti, S. P., & Halgin, D. S. (2011). On network theory. Organization Science, 22(5), 1168–1181. https://doi.org/10.1287/orsc.1100.0641
Borgatti, S. P., Mahra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892–895. https://doi.org/10.1126/science.1165821
Boucsein, W. (2012). Electrodermal activity (2ndnd ed.). Springer. https://doi.org/10.1007/978-1-4614-1126-0.
Cacioppo, J. T., & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45(1), 16–28. https://doi.org/10.1037/0003-066X.45.1.16
Critchley, H. D. (2002). Electrodermal responses: What happens in the brain. The Neuroscientist, 8(2), 132–142. https://doi.org/10.1177/107385840200800209
Critchley, H. D., Eccles, J., & Garfinkel, S. N. (2013). Interaction between cognition, emotion, and the autonomic nervous system. Handbook of Clinical Neurology, 117, 59–77. https://doi.org/10.1016/B978-0-444-53491-0.00006-7
Dawson, M. E., Schell, A. M., & Filion, D. L. (2017). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (4th ed., pp. 217–243). Cambridge University Press. https://doi.org/10.1017/9781107415782.010
Di Mitri, D., Schneider, J., Specht, M., & Drachsler, H. (2018). From signals to knowledge: A conceptual model for multimodal learning analytics. Journal of Computer Assisted Learning, 34(4), 338–349. https://doi.org/10.1111/jcal.12288
Dindar, M., Järvelä, S., & Haataja, E. (2020). What does physiological synchrony reveal about metacognitive experiences and group performance? British Journal of Educational Technology, 51(5), 1577–1596. https://doi.org/10.1111/bjet.12981
Efklides, A. (2011). Interactions of metacognition with motivation and affect in self-regulated learning: The MASRL model. Educational Psychologist, 46(1), 6–25. https://doi.org/10.1080/00461520.2011.538645
Empatica Inc. (2018). Recommended tools for signal processing and data analysis. https://support.empatica.com/hc/en-us/articles/202872739-Recommended-tools-for-signal-processing-and-data-analysis
Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for. PLoS One, 12(6), e0179891. https://doi.org/10.1371/journal.pone.0179891
Epskamp, S., Borsboom, D., & Fried, E. I. (2018a). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. https://doi.org/10.3758/s13428-017-0862-1
Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A. M., Riese, H., & Cramer, A. O. J. (2018b). Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections. Clinical Psychological Science, 6(3), 416–427. https://doi.org/10.1177/2167702617744325
Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018c). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453–480. https://doi.org/10.1080/00273171.2018.1454823
Eysenck, M. W. (1976). Arousal, learning, and memory. Psychological Bulletin, 83(3), 389–404. https://doi.org/10.1037/0033-2909.83.3.389
Féré, C. (1888). Note Sur les modifications de la résistance électrique sous l’influence des excitations sensorielles et des émotions [note on the modification of electric resistance under the influence of sensory excitement and emotions]. Comptes Rendus Société de Biologie, 5, 217–219.
Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1–10. https://doi.org/10.1007/s00127-016-1319-z
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911. https://doi.org/10.1037/0003-066X.34.10.906
Garbarino, M., Lai, M., Tognetti, S., Picard, R., & Bender, D. (2014). Empatica E3 - a wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In Proceedings of the 4th international conference on wireless Mobile communication and healthcare (pp. 39–42). https://doi.org/10.4108/icst.mobihealth.2014.257418
Graesser, A. C., Hu, X., & Sottilare, R. A. (2018). Intelligent tutoring systems. In F. Fischer, C. E. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), International handbook of the learning sciences (pp. 246–255). Routledge.
Haataja, E., Malmberg, J., & Järvelä, S. (2018). Monitoring in collaborative learning: Co-occurrence of observed behavior and physiological synchrony explored. Computers in Human Behavior, 87, 337–347. https://doi.org/10.1016/j.chb.2018.06.007
Haataja, E., Malmberg, J., Dindar, M., & Järvelä, S. (2020). The pivotal role of monitoring for collaborative problem solving seen in interaction, performance, and interpersonal physiology. [Manuscript submitted for publication].
Hadwin, A. F., Järvelä, S., & Miller, M. (2017). Self-regulation, co-regulation and shared regulation in collaborative learning environments. In D. Schunk & J. Greene (Eds.), Handbook of self-regulation of learning and performance (2nd ed., pp. 65–84). Routledge. https://doi.org/10.4324/9781315697048
Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 40(6), 895–903. https://doi.org/10.1111/1469-8986.00107
Harley, J. M., Bouchet, F., Hussain, M. S., Azevedo, R., & Calvo, R. (2015). A multi-componential analysis of emotions during complex learning with an intelligent multi-agent system. Computers in Human Behavior, 48, 615–625. https://doi.org/10.1016/j.chb.2015.02.013
Järvelä, S., & Bannert, M. (2021). Temporal and adaptive processes of regulated learning - what can multimodal data tell? Learning and Instruction, 72, 101268. https://doi.org/10.1016/j.learninstruc.2019.101268
Järvelä, S., Malmberg, J., Haataja, E., Sobocinski, M., & Kirschner, P. A. (2019). What multimodal data can tell us about the students’ regulation of their learning process? Learning and Instruction, 72, 101203. https://doi.org/10.1016/j.learninstruc.2019.04.004
Järvelä, S., Gašević, D., Seppänen, T., Pechenizkiy, M., & Kirschner, P. A. (2020). Bridging learning sciences, machine learning and affective computing for understanding cognition and affect in collaborative learning. British Journal of Educational Technology, 51(6), 2391–2406. https://doi.org/10.1111/bjet.12917
Kreibig, S. D., Gendolla, G. H. E., & Scherer, K. R. (2012). Goal relevance and goal conduciveness appraisals lead to differential autonomic reactivity in emotional responding to performance feedback. Biological Psychology, 91(3), 365–375. https://doi.org/10.1016/j.biopsycho.2012.08.007
Li, S., Du, H., Xing, W., Zheng, J., Chen, G., & Xie, C. (2020). Examining temporal dynamics of self-regulated learning behaviors in STEM learning: A network approach. Computers and Education, 158, 103987. https://doi.org/10.1016/j.compedu.2020.103987
Malmberg, J., Järvelä, S., & Järvenoja, H. (2017). Capturing temporal and sequential patterns of self, co-, and socially shared regulation in the context of collaborative learning. Contemporary Educational Psychology, 49, 160–174. https://doi.org/10.1016/j.cedpsych.2017.01.009
Malmberg, J., Haataja, E., Seppänen, T., & Järvelä, S. (2019a). Are we together or not? The temporal interplay of monitoring, physiological arousal and physiological synchrony during a collaborative exam. International Journal of Computer-Supported Collaborative Learning, 14(4), 467–490. https://doi.org/10.1007/s11412-019-09311-4
Malmberg, J., Järvelä, S., Holappa, J., Haataja, E., Huang, X., & Siipo, A. (2019b). Going beyond what is visible: What multichannel data can reveal about interaction in the context of collaborative learning? Computers in Human Behavior, 96, 235–245. https://doi.org/10.1016/j.chb.2018.06.030
Malmberg, J., Fincham, O., Pijeira-Díaz, H. J., Järvelä, S., & Gašević, D. (2021). Revealing the hidden structure of physiological states during metacognitive monitoring in collaborative learning. Journal of Computer Assisted Learning., 37, 861–874.
Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18(2), 112–117. https://doi.org/10.1111/j.1467-8721.2009.01619.x
Molenaar, I., Horvers, A., & Baker, R. S. (2019). What can moment-by-moment learning curves tell about students’ self-regulated learning? Learning and Instruction, 101206. https://doi.org/10.1016/j.learninstruc.2019.05.003
Mønster, D., Håkonsson, D. D., Eskildsen, J. K., & Wallot, S. (2016). Physiological evidence of interpersonal dynamics in a cooperative production task. Physiology & Behavior, 156, 24–34. https://doi.org/10.1016/j.physbeh.2016.01.004
Morris, A. L., Cleary, A. M., & Still, M. L. (2008). The role of autonomic arousal in feelings of familiarity. Consciousness and Cognition, 17(4), 1378–1385. https://doi.org/10.1016/j.concog.2008.04.005
Neumann, E., & Blanton, R. (1970). The early history of electrodermal research. Psychophysiology, 6(4), 453–475. https://doi.org/10.1111/j.1469-8986.1970.tb01755.x
Noroozi, O., Pijeira-Díaz, H. J., Sobocinski, M., Dindar, M., Järvelä, S., & Kirschner, P. A. (2020). Multimodal data indicators for capturing cognitive, motivational, and emotional learning processes: A systematic literature review. Education and Information Technologies, 25(November), 5499–5547. https://doi.org/10.1007/s10639-020-10229-w
Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., Wilder-Smith, O., McGee, H. A., Liu, S., & Goodwin, M. S. (2017). Interpersonal autonomic physiology: A systematic review of the literature. Personality and Social Psychology Review, 21(2), 99–141. https://doi.org/10.1177/1088868316628405
Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8, 1–28. https://doi.org/10.3389/fpsyg.2017.00422
Pecchinenda, A., & Smith, C. A. (1996). The affective significance of skin conductance activity during a difficult problem-solving task. Cognition & Emotion, 10(5), 481–504. https://doi.org/10.1080/026999396380123
Peeters, W., Saqr, M., & Viberg, O. (2020). Applying learning analytics to map students’ self-regulated learning tactics in an academic writing course. Proceedings of the 28th International Conference on Computers in Education, 1(September), 245–254.
Pijeira-Díaz, H. J., Drachsler, H., Järvelä, S., & Kirschner, P. A. (2016). Investigating collaborative learning success with physiological coupling indices based on electrodermal activity. Proceedings of the Sixth International Conference on Learning Analytics and Knowledge, 64–73. https://doi.org/10.1145/2883851.2883897
Pijeira-Díaz, H. J., Drachsler, H., Kirschner, P. A., & Järvelä, S. (2018). Profiling sympathetic arousal in a physics course: How active are students? Journal of Computer Assisted Learning, 34(4), 397–408. https://doi.org/10.1111/jcal.12271
Pijeira-Díaz, H. J., Drachsler, H., Järvelä, S., & Kirschner, P. A. (2019). Sympathetic arousal commonalities and arousal contagion during collaborative learning: How attuned are triad members? Computers in Human Behavior, 92(March), 188–197. https://doi.org/10.1016/j.chb.2018.11.008
Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 451–502). Academic. https://doi.org/10.1016/B978-012109890-2/50043-3
Raskin, D. C. (1973). Attention and arousal. In W. F. Prokasy & D. C. Raskin (Eds.), Electrodermal activity in psychological research (pp. 125–155). Academic.
Reimann, P. (2009). Time is precious: Variable- and event-centred approaches to process analysis in CSCL research. International Journal of Computer-Supported Collaborative Learning, 4(3), 239–257. https://doi.org/10.1007/s11412-009-9070-z
Reimann, P. (2019). Methodological progress in the study of self-regulated learning enables theory advancement. Learning and Instruction, 72, 101269.
Robbins, T. W. (1997). Arousal systems and attentional processes. Biological Psychology, 45(1–3), 57–71. https://doi.org/10.1016/S0301-0511(96)05222-2
Roll, I., & Winne, P. H. (2015). Understanding, evaluating, and supporting self-regulated learning using learning analytics. Journal of Learning Analytics, 2, 7–12. https://doi.org/10.18608/jla.2015.21.2
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714
Saqr, M., & Lopez-Pernas, S. (2021a). Idiographic Learning Analytics: A single student (N=1) approach using psychological networks. Companion Proceedings 11th International Conference on Learning Analytics & Knowledge (LAK21), April, 456–463.
Saqr, M., & Lopez-Pernas, S. (2021b). Idiographic learning analytics: A definition and a case study. In 2021 international conference on advanced learning technologies (ICALT) (pp. 163–165). https://doi.org/10.1109/ICALT52272.2021.00056
Saqr, M., & Nouri, J. (2020). High resolution temporal network analysis to understand and improve collaborative learning. ACM International Conference Proceeding Series, 314–319. https://doi.org/10.1145/3375462.3375501
Saqr, M., Nouri, J., & Jormanainen, I. (2019). A learning analytics study of the effect of group size on social dynamics and performance in online collaborative learning. In M. Scheffel, J. Broisin, V. Pammer-Schindler, A. Ioannou, & J. Schneider (Eds.), Transforming learning with meaningful technologies. EC-TEL 2019. Lecture notes in computer science (Vol. 11722). Springer. https://doi.org/10.1007/978-3-030-29736-7_35
Saqr, M., Viberg, O., & Peeters, W. (2021). Using psychological networks to reveal the interplay between foreign language students’ self-regulated learning tactics. STELLA2020, 1, 12.
Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69(5), 379–399. https://doi.org/10.1037/h0046234
Schneider, J., Börner, D., van Rosmalen, P., & Specht, M. (2015). Augmenting the senses: A review on sensor-based learning support. Sensors, 15(2), 4097–4133. https://doi.org/10.3390/s150204097
Schneider, B., Dich, Y., & Radu, I. (2020). Unpacking the relationship between existing and new measures of physiological synchrony and collaborative learning: A mixed methods study. International Journal of Computer-Supported Collaborative Learning, 15(1), 89–113. https://doi.org/10.1007/s11412-020-09318-2
Siew, C. S. Q., Wulff, D. U., Beckage, N. M., & Kenett, Y. N. (2019). Cognitive network science: A review of research on cognition through the lens of network representations, processes, and dynamics. Complexity, 2019, 2108423. https://doi.org/10.1155/2019/2108423
Sobocinski, M., Järvelä, S., Malmberg, J., Dindar, M., Isosalo, A., & Noponen, K. (2020). How does monitoring set the stage for adaptive regulation or maladaptive behavior in collaborative learning? Metacognition and Learning, 15, 99–127. https://doi.org/10.1007/s11409-020-09224-w
Sterling, P. (2012). Allostasis: A model of predictive regulation. Physiology & Behavior, 106(1), 5–15. https://doi.org/10.1016/j.physbeh.2011.06.004
Stuldreher, I. V., Thammasan, N., van Erp, J. B. F., & Brouwer, A. M. (2020). Physiological synchrony in EEG, electrodermal activity and heart rate detects attentionally relevant events in time. Frontiers in Neuroscience, 14, 575521. https://doi.org/10.3389/fnins.2020.575521
Swan, M. (2012). Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified self 2.0. Journal of Sensor and Actuator Networks, 1(3), 217–253. https://doi.org/10.3390/jsan1030217
Taub, M., Azevedo, R., Rajendran, R., Cloude, E. B., Biswas, G., & Price, M. J. (2019). How are students’ emotions related to the accuracy of cognitive and metacognitive processes during learning with an intelligent tutoring system? Learning and Instruction, 72. https://doi.org/10.1016/j.learninstruc.2019.04.001
Verwey, W. B., & Veltman, H. A. (1996). Detecting short periods of elevated workload: A comparison of nine workload assessment techniques. Journal of Experimental Psychology: Applied, 2(3), 270–285. https://doi.org/10.1037/1076-898X.2.3.270
Winne, P. H. (2017). Leveraging big data to help each learner and accelerate learning science. Teachers College Record, 119(3).
Winne, P. H. (2019). Paradigmatic dimensions of instrumentation and analytic methods in research on self-regulated learning. Computers in Human Behavior, 96, 285–289. https://doi.org/10.1016/j.chb.2019.03.026
Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Routledge.
Winne, P. H., Nesbit, J. C., & Popowich, F. (2017). nStudy: A system for researching information problem solving. Technology, Knowledge and Learning, 22(3), 369–376. https://doi.org/10.1007/s10758-017-9327-y
Wolters, C. A. (2003). Regulation of motivation: Evaluating an underemphasized aspect of self-regulated learning. Educational Psychologist, 38(4), 189–205. https://doi.org/10.1207/S15326985EP3804_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Malmberg, J., Saqr, M., Järvenoja, H., Haataja, E., Pijeira-Díaz, H.J., Järvelä, S. (2022). Modeling the Complex Interplay Between Monitoring Events for Regulated Learning with Psychological Networks. In: Giannakos, M., Spikol, D., Di Mitri, D., Sharma, K., Ochoa, X., Hammad, R. (eds) The Multimodal Learning Analytics Handbook. Springer, Cham. https://doi.org/10.1007/978-3-031-08076-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-08076-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08075-3
Online ISBN: 978-3-031-08076-0
eBook Packages: Computer ScienceComputer Science (R0)