Abstract
This paper proposed an active disturbance control method for tracking control of robot manipulators. Firstly, all of the system uncertainties and external disturbances are considered as an extended variable and a disturbance observer is used to exactly approximate this total uncertainty. Therefore, accurate information is provided for the control loop and chattering behavior in the control input is significantly reduced. Next, to improve the response speed and tracking accuracy, a sliding mode control is synthesized by combining the non-singular fast terminal sliding mode control and the designed observer. The proposed is reconstructed using backstepping control to obtain the asymptotic stability for the whole control system based on Lyapunov theory. Finally, the examples are simulated to demonstrate the effectiveness of the proposed control method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sun, D., Hu, S., Shao, X., Liu, C.: Global stability of a saturated nonlinear PID controller for robot manipulators. IEEE Trans. Control Syst. Technol. 17(4), 892–899 (2009)
Yu, W., Rosen, J.: Neural PID control of robot manipulators with application to an upper limb exoskeleton. IEEE Trans. Cybern. 43(2), 673–684 (2013)
Song, Z., Yi, J., Zhao, D., Li, X.: A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst. 154(2), 208–226 (2005)
Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. Int. J. Robot. Res. 6(2), 16–28 (1987)
Lin, F., Brandt, R.D.: An optimal control approach to robust control of robot manipulators. IEEE Trans. Robot. Autom. 14(1), 69–77 (1998)
Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2010)
Truong, T.N., Kang, H.J., Le, T.D.: Adaptive neural sliding mode control for 3-DOF planar parallel manipulators. In: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control, pp. 1–6 (2019)
Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern.: Syst. 49(7), 1448–1458 (2018)
Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)
Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)
Vo, A.T., Kang, H.J.: An adaptive terminal sliding mode control for robot manipulators with non-singular terminal sliding surface variables. IEEE Access 7, 8701–8712 (2018)
Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)
Zhang, Y., Li, R., Xue, T., Liu, Z., Yao, Z.: An analysis of the stability and chattering reduction of high-order sliding mode tracking control for a hypersonic vehicle. Inf. Sci. 348, 25–48 (2016)
Anh Tuan, V., Kang, H.J.: A new finite time control solution for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting scheme. J. Comput. Nonlinear Dyn. 14(3) (2019)
Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B., Moreno, J.A.: Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans. Ind. Electron. 63(6), 3677–3685 (2016)
Doan, Q.V., Le, T.D., Vo, A.T.: Synchronization full-order terminal sliding mode control for an uncertain 3-DOF planar parallel robotic manipulator. Appl. Sci. 9(9), 1756 (2019)
Feng, Y., Zhou, M., Zheng, X., Han, F., Yu, X.: Full-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. J. Franklin Inst. 355(2), 653–674 (2018)
Chen, M.S., Hwang, Y.R., Tomizuka, M.: A state-dependent boundary layer design for sliding mode control. IEEE Trans. Autom. Control 47(10), 1677–1681 (2002)
Li, S., Yang, J., Chen, W.H., Chen, X.: Disturbance Observer-Based Control: Methods and Applications. CRC Press, Boca Raton (2014)
Liu, J., Wang, X.: Advanced sliding mode control for mechanical systems, pp. 206–210. Springer, Beijing (2012). https://doi.org/10.1007/978-3-642-20907-9
Zhang, J., Liu, X., Xia, Y., Zuo, Z., Wang, Y.: Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances. IEEE Trans. Ind. Electron. 63(11), 7040–7048 (2016)
Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1D1A3A03103528).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Truong, T.N., Kang, HJ., Vo, A.T. (2020). An Active Disturbance Rejection Control Method for Robot Manipulators. In: Huang, DS., Premaratne, P. (eds) Intelligent Computing Methodologies. ICIC 2020. Lecture Notes in Computer Science(), vol 12465. Springer, Cham. https://doi.org/10.1007/978-3-030-60796-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-60796-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60795-1
Online ISBN: 978-3-030-60796-8
eBook Packages: Computer ScienceComputer Science (R0)