[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Compositional Verification of Concurrent Systems by Combining Bisimulations

  • Conference paper
  • First Online:
Formal Methods – The Next 30 Years (FM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11800))

Included in the following conference series:

Abstract

One approach to verify a property expressed as a modal \(\mu \)-calculus formula on a system with several concurrent processes is to build the underlying state space compositionally (i.e., by minimizing and recomposing the state spaces of individual processes, keeping visible only the relevant actions occurring in the formula), and check the formula on the resulting state space. It was shown previously that, when checking the formulas of the \(L_{\mu }^{ dsbr }\) fragment of \(\mu \)-calculus (consisting of weak modalities only), individual processes can be minimized modulo divergence-preserving branching (divbranching) bisimulation. In this paper, we refine this approach to handle formulas containing both strong and weak modalities, so as to enable a combined use of strong or divbranching bisimulation minimization on concurrent processes depending whether they contain or not the actions occurring in the strong modalities of the formula. We extend \(L_{\mu }^{ dsbr }\) with strong modalities and show that the combined minimization approach preserves the truth value of formulas of the extended fragment. We implemented this approach on top of the CADP verification toolbox and demonstrated how it improves the capabilities of compositional verification on realistic examples of concurrent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For instance, the composition of P and Q where action a of P synchronizes with either b or c of Q, can be written as \(\rho (P)\,|[b, c]|\,Q\), where \(\rho \) maps a onto \(\{b, c\}\).

  2. 2.

    For instance, \(P_1\,|[a]|\,(P_2\,|[]|\,P_3)\) is equivalent to \(\rho _0((\rho _1(P_1)\,|[a_1]|\,\rho _2(P_2))\,|[a_2]|\,\rho _3(P_3))\) —observe the different associativity— where \(\rho _1\) maps a onto \(\{a_1, a_2\}\), \(\rho _2\) renames a into \(a_1\), \(\rho _3\) renames a into \(a_2\), and \(\rho _0\) renames \(a_1\) and \(a_2\) into a.

  3. 3.

    \(\mu \)ACTL\(\setminus \)X denotes ACTL\(\setminus \)X plus fixed points. The authors of [24] claim that \(L_{\mu }^{ dsbr }\) is as expressive as \(\mu \)ACTL\(\setminus \)X, but they omit that the \(\langle \varphi _1?.\alpha _{\tau } \rangle \,@\) weak infinite looping modality cannot be expressed in \(\mu \)ACTL\(\setminus \)X.

  4. 4.

    Theorem 2 generalizes easily to more general compositions \(P\,||\,Q\) (with admissible action mappings) if Q does not contain any action that maps onto a strong action.

  5. 5.

    Otherwise, our approach coincides with the mono-bisimulation approach of [24]. In all the examples addressed in this section, there is always a unique minimal set \(A_s\), whose identification is made easy using Lemma 1.

  6. 6.

    Specification available at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_05.

  7. 7.

    http://rers-challenge.org.

References

  1. Andersen, H.R.: Partial model checking. In: Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science LICS, San Diego, California, USA, pp. 398–407. IEEE Computer Society Press, June 1995

    Google Scholar 

  2. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of communicating sequential processes. J. ACM 31(3), 560–599 (1984)

    Article  MathSciNet  Google Scholar 

  3. Champelovier, D., et al.: Reference manual of the LNT to LOTOS translator (Version 6.7), INRIA, Grenoble, France, July 2017

    Google Scholar 

  4. Cheung, S.C., Kramer, J.: Enhancing compositional reachability analysis with context constraints. In: Proceedings of the 1st ACM SIGSOFT International Symposium on the Foundations of Software Engineering, Los Angeles, CA, USA, pp. 115–125. ACM Press, December 1993

    Google Scholar 

  5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)

    Article  Google Scholar 

  6. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19811-3_9

    Chapter  Google Scholar 

  7. de Putter, S., Wijs, A., Lang, F.: Compositional Model Checking is Lively – Extended Version 2018. Submitted to Science of Computer Programming (2018)

    Google Scholar 

  8. Fantechi, A., Gnesi, S., Ristori, G.: From ACTL to \(\mu \)-calculus (extended abstract). In: Proceedings of the Workshop on Theory and Practice in Verification. ERCIM (1992)

    Google Scholar 

  9. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)

    Article  MathSciNet  Google Scholar 

  10. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) FORTE 2001. IFIP, vol. 69, pp. 377–392. Springer, Boston, MA (2002). https://doi.org/10.1007/0-306-47003-9_24

    Chapter  Google Scholar 

  11. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)

    Article  MathSciNet  Google Scholar 

  12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. (STTT) 15(2), 89–107 (2013)

    Article  Google Scholar 

  13. Garavel, H., Thivolle, D.: Verification of GALS systems by combining synchronous languages and process calculi. In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 241–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02652-2_20

    Chapter  Google Scholar 

  14. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023732

    Chapter  Google Scholar 

  15. Groote, J.F., Ponse, A.: The Syntax and Semantics of \(\mu \)CRL. CS-R 9076. Centrum voor Wiskunde en Informatica, Amsterdam (1990)

    Google Scholar 

  16. ISO/IEC. LOTOS - A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour. International Standard 8807, International Organization for Standardization - Information Processing Systems - Open Systems Interconnection, Geneva, September 1989

    Google Scholar 

  17. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, International Organization for Standardization - Information Technology, Geneva, September 2001

    Google Scholar 

  18. Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27, 333–354 (1983)

    Article  MathSciNet  Google Scholar 

  19. Krimm, J.-P., Mounier, L.: Compositional state space generation from Lotos programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035392

    Chapter  Google Scholar 

  20. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional, and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). https://doi.org/10.1007/11589976_6

    Chapter  Google Scholar 

  21. Lang, F., Mateescu, R.: Partial model checking using networks of labelled transition systems and boolean equation systems. Log. Methods Comput. Sci. 9(4), 1–32 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Malhotra, J., Smolka, S.A., Giacalone, A., Shapiro, R.: A tool for hierarchical design and simulation of concurrent systems. In: Proceedings of the BCS-FACS Workshop on Specification and Verification of Concurrent Systems, Stirling, Scotland, UK, pp. 140–152. British Computer Society, July 1988

    Google Scholar 

  23. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-0_12

    Chapter  Google Scholar 

  24. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

    Article  Google Scholar 

  25. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  26. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2_17

    Chapter  Google Scholar 

  27. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0017309

    Chapter  Google Scholar 

  28. Pnueli, A.: In transition from global to modular temporal reasoning about programs. Log. Models Concurr. Syst. 13, 123–144 (1984)

    MathSciNet  Google Scholar 

  29. Sabnani, K.K., Lapone, A.M., Ümit Uyar, M.: An algorithmic procedure for checking safety properties of protocols. IEEE Trans. Commun. 37(9), 940–948 (1989)

    Article  Google Scholar 

  30. Streett, R.: Propositional dynamic logic of looping and converse. Inf. Control 54, 121–141 (1982)

    Article  MathSciNet  Google Scholar 

  31. Tai, K.-C., Koppol, P.V.: An incremental approach to reachability analysis of distributed programs. In: Proceedings of the 7th International Workshop on Software Specification and Design, Los Angeles, CA, USA, pp. 141–150, Piscataway, NJ, December 1993. IEEE Press (1993)

    Google Scholar 

  32. Tai, K.-C., Koppol, P.V.: Hierarchy-based incremental reachability analysis of communication protocols. In: Proceedings of the IEEE International Conference on Network Protocols, San Francisco, CA, USA, pp. 318–325. IEEE Press, Piscataway, NJ, October 1993 (1993)

    Google Scholar 

  33. Valmari, A.: Compositional state space generation. In: Rozenberg, G. (ed.) ICATPN 1991. LNCS, vol. 674, pp. 427–457. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56689-9_54

    Chapter  Google Scholar 

  34. van Glabbeek, R.J., Weijland, W.P.: Branching-time and abstraction in bisimulation semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Informatica, Amsterdam 1989. Also in Proceedings IFIP 11th World Computer Congress, San Francisco (1989)

    Google Scholar 

  35. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)

    Article  MathSciNet  Google Scholar 

  36. Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra. In: Proceedings of the ACM SIGSOFT Symposium on Testing, Analysis, and Verification (SIGSOFT 1991), Victoria, British Columbia, Canada, pp. 49–59. ACM Press, October 1991 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, F., Mateescu, R., Mazzanti, F. (2019). Compositional Verification of Concurrent Systems by Combining Bisimulations. In: ter Beek, M., McIver, A., Oliveira, J. (eds) Formal Methods – The Next 30 Years. FM 2019. Lecture Notes in Computer Science(), vol 11800. Springer, Cham. https://doi.org/10.1007/978-3-030-30942-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30942-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30941-1

  • Online ISBN: 978-3-030-30942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics